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Introduction

In this thesis a study of the D0 meson production in proton-antiproton
collisions is presented. The data were collected with the CDF II detector at
the Tevatron Collider of the Fermi National Accelerator Laboratory. This
work is part of a specific effort by the CDF Collaboration to measure the
inclusive differential cross section of prompt charmed mesons in the low pT

kinematic region.

The reconstruction of the neutral charmed meson (D0) at low momenta
and at different energies gives the opportunity to enrich the knowledge of the
behavior of the strong interaction in the region where c-quark production is
nearly in non-perturbative condition. In fact, the actual QCD theory cannot
predict the behavior of the strong interaction in the low transferred four-
momentum region (low Q2) because of the running of the strong coupling
constant αs. In these kinematic conditions, αs is of the order of the unity,
thus perturbative expansions are no longer permitted. Nowadays, some phe-
nomenological models have been formulated, but they are usually able to
describe only few aspects of the observed physical quantities; however, they
fail in predicting the strong interaction behavior in its whole complexity. Ex-
perimental studies in this region of interaction are crucial to overcome the
theoretical limitation and to model new theories.

An analysis published by the CDF Collaboration in 2003 probed a mini-
mum pT of the D0 of only 5.5 GeV/c because of the biases introduced by the
trigger selection. In a recent study performed at the center of mass energy
of 1.96 TeV, a lower limit of 1.5 GeV/c is reached using the Minimum Bias
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INTRODUCTION 6

(MB) and Zero Bias (ZB) data samples so that no bias is introduced what-
soever.
This thesis, carried out within the Bologna research group, complements that
studies as it concerns the analysis of the MB and ZB data samples collected
during a low energy scan at the energy of 900 GeV in the center of mass.
This work is the first measurement of D0 production ever performed in the
low pT range at this energy. The sample analyzed is the largest ever collected
by a hadron collider in these conditions.

The primary purpose of the present analysis is the measurement of the
D0 raw yields as a function of the transverse momentum: the main step in
the measurement of the D0 production cross section. The decay channel
used here is D0 → K−π+ (D̄0 → K+π−) because of its simple topology,
its high reconstruction efficiency (all the produced particles are charged and
therefore observable in the tracking system) and its relatively high branching
ratio (about 3.9%).

A preliminary task towards the measurement of the yields has been com-
pleted during the thesis work: since the beam position was not recorded for
the runs of low energy scan, it has been reconstructed from data run-by-run.
This was a necessary step to unfold the D0 signal whose signature is a sec-
ondary vertex displaced from the beam of several microns. Finally the raw
yields as a function of pT (D0) have been measured.

This thesis is composed of seven chapters. In the first one, a theoretical
outline is given. The second one shortly describes the CDF detector with
some emphasis on the subdetectors used for this analysis. Chapter three de-
scribes the data samples and the analysis strategy. Chapter four is dedicated
to the reconstruction of the beam position and chapter five to the preliminary
data simulations. In chapter six, the search of the signal is finalized and in
chapter seven the measurement of the raw yields as a function of pT (D0) is
presented.



Chapter 1

Theory and motivation

1.1 The Standard Model

The Standard Model (SM) is a theory that describes the strong, electro-
magnetic and weak interactions of the elementary particles in the framework
of the quantum field theory. The weak and the electromagnetic interactions
are unified into the electroweak interaction.

The SM is a gauge theory based on the local group of symmetry

GSM = SU(3)C ⊗ SU(2)T ⊗ U(1)Y (1.1)

where the subscripts indicate the conserved charges: the strong charge,
or color C, the weak isospin T (or rather its third component T3) and the
hypercharge Y . These quantities are related to the electric charge Q through
the Gell-Mann-Nishijima relation:

Q =
Y

2
+ T3. (1.2)

In the quantum field framework, the elementary particles correspond to
the irreducible representations of the GSM symmetry group. In particular,
the particles with half-integer spin are called fermions and they are described
by the Fermi-Dirac statistics, whether the particles with integer spin are
called bosons and they are described by the Bose-Einstein statistics. The
fundamental fermions and their quantum numbers are listed in Tab 1.1.
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1.1 The Standard Model 8

Generation: I II III T3 Y Q

leptonic doublets
(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
1/2
−1/2

-1 0
−1

leptonic singlets eR µR τR 0 -2 -2

quark doublets
(
uL
d′L

) (
cL
s′L

) (
tL
b′L

)
1/2
−1/2

1/3 2/3
−1/3

quark singlets uR
dR

cR
s′R

tR
b′R

0 4/3
−2/3

2/3
−1/3

Table 1.1: SM elementary fermions. The subscripts L and R indicate re-
spectively the negative helicity (left-handed) and the positive helicity (right-
handed).

Charged leptons interact via the weak and the electromagnetic forces,
while neutrinos only interact via the weak force. Quarks can also interact
via the strong force; they are triplets of SU(3)C , that is they can exist in three
different colors: C = R, G, B. If one chooses a base where u, c and t quarks
are simultaneously eigenstates of both the strong and the weak interactions,
the remaining eigenstates are usually written as d, s and b for the strong
interaction and d′, s′ and b′ for the weak interaction, because the latter ones
are the result of a Cabibbo rotation on the first ones.

The gauge group univocally determines the interactions and the number
of gauge bosons that carry them; the gauge bosons correspond to the gener-
ators of the group: 8 gluons (g) for the strong interaction, a photon (γ) and
three bosons (W±, Z0) for the electroweak interaction.

A gauge theory by itself can not provide a description of massive particles,
but it is experimentally well know that most of the elementary particles have
non-zero masses. The introduction of massive fields in the SM lagrangian
would make the theory non-renormalizable, and - so far - mathematically
impossible to handle. This problem is solved in the SM by the introduction
of a scalar iso-doublet Φ(x), the Higgs field, see Tab 1.2, which gives masses
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to W+, W− and Z0 gauge bosons and to the fermions [1, 2].

T3 Y Q

Higgs doublet Φ(x) ≡
(
φ+(x)
φ0(x)

)
1/2
−1/2

+1 1
0

Table 1.2: Higgs doublet and its third component of the weak isospin, hy-
percharge and electric charge.

The existence of the Higgs boson has not been experimentally confirmed
yet and the Higgs mass is one of the free parameters of the SM.

1.2 Strong interaction theory: QCD

The Quantum Chromodynamics (QCD) is the current theory used to
describe the strong interaction; it is based on the non-abelian SU(3) gauge
group and it governs the dynamics of quarks and gluons.

QCD predictions are well tested at high energies where perturbative ap-
proaches are possible because of the smallness of its coupling constant, αs,
see sec. 1.2.1; on the other hand, in the low-energy region QCD becomes a
strongly-coupled theory and a perturbative approach can not be applied.

In order to obtain a relativistic quantum field theory of interacting quarks
and gluons, one should start from the QCD lagrangian density:

LQCD = −1

4
Gµν
a G

a
µν +

∑
f

q̄f [iγ
µDµ −mf ]qf (1.3)

where q stands for the quark field and f for the quark flavours relevant in
the interaction, while Gµν

a is the gluon field strength tensor, namely

Gµν
a = ∂µAνa − ∂νAµa + gf bca A

µ
bA

ν
c , (1.4)

Dµ is the gauge covariant derivative, namely

Dµ = ∂µ − ig
2
Aµaλ

a, (1.5)
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Aµa is the gluon field, f bca are the antisymmetric structure constants and g a
constant related to αs via the formula αs = g2/4π.

Quarks and gluons are the fundamental degrees of freedom of the QCD
theory; they both carry color charge, so the gluons that mediate the strong
interaction can interact among themselves. Free quarks and gluons have
never been observed because of the confinement of the color charge. The
QCD field equations give rise to the complex world of nuclear and hadronic
physics, that is only qualitatively understood by now.

An intrinsic QCD scale, ΛQCD, is set through the standard process of the
renormalization in quantum field theory; below the ΛQCD scale the standard
perturbation theory is no longer valid because of the running of the coupling
constant.
In principle, all the hadron masses could be evaluated in terms of ΛQCD,
starting from a normalization parameter left free in the theory. The measured
value of the proton mass appears to be a suitable choice for the normalization
parameter because it is non-zero in virtue of the energy of the confined quarks
and gluons [3].

There is no mathematical description of color confinement but, qualita-
tively, this is believed to deal with the fact that the quark and gluon bilinears
q̄aqa and Ga

µνG
µν
a acquire non-zero vacuum expectation values. Even if the

QCD Lagrangian is well known and the strong interactions are understood
in principle, the features of low transferred momentum QCD phenomena are
far to be theoretically predicted. That is why experiments which test QCD
in the non-perturbative regime are fundamental to improve our understand-
ing of the strong interactions: they are the basis on which orient further
theoretical and experimental researches.

1.2.1 QCD coupling constant

The qualitative understanding of QCD is based on the classical calculation
of the dependence of the QCD coupling constant on the renormalization scale
of energy, µ. The simplest way to show this dependence is to define the so
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called β-function:

β(αs) ≡
µ

2

∂α

∂µ
= − β0

4π
α2
s −

β1

8π2
α3
s − ... (1.6)

where
β0 = 11− 2

3
nf (1.7)

β1 = 51− 19

3
nf (1.8)

and nf is the number of active quarks, i.e. the quarks whose mass is less
than µ. One introduces the arbitrary scale Λ to provide the µ dependence of
αs and solve the differential equation (1.6).
A solution in the first order of approximation is the following [4]:

αs(µ
2) =

4π

β0 ln(µ2/Λ2)
+O

( ln[ln(µ2/Λ2)]

ln2(µ2/Λ2)]

)
. (1.9)

The solution (1.9) shows the two main properties of the theory: the
asymptotic freedom

αs
µ→+∞−→ 0 (1.10)

and the strong coupling scale below µ ∼ Λ.
As one can see from Fig. 1.1, it is possible to roughly divide the physics

of the strong interaction into two regions as a function of the energy of the
process: the perturbative QCD (high transferred momentum and little αs)
and the non-perturbative QCD (low transferred momentum and high αs).

The predictions of the QCD in the perturbative region (pQCD), where
the standard Feynman rules apply, have been well tested. In the perturbative
regime, the magnitude of the coupling constant is the fundamental parameter
for pQCD predictions. A multitude of phenomena, such as scaling violations
in deep inelastic scattering, high-energy hadron collisions, heavy-quarkonium
(in particular bottomonium) decay, jet rates in e+e− collisions and in ep

collisions depends on the value of QCD coupling constant; for this reason, we
can then extrapolate the coupling constant value in a huge range of µ because
we are able to measure it for many different processes. The different values
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation

Deep Inelastic Scattering

July 2009

Figure 1.1: The running of the strong coupling constant as a function of the
transferred momentum (i.e. scale of energy).

of αs for the different processes are listed in Fig. 1.2; they are consistent
with each other and their average value is [4]:

αs(m
2
Z0) = 0.1184± 0.0007. (1.11)

The non-perturbative regime area is quantitatively much less understood:
it is the area of the strong nuclear forces and the hadronic resonances, where
we still have several unresolved questions.

1.2.2 Lattice QCD and Effective Field Theory

The theoretical approaches to the non-perturbative QCD region are essen-
tially two: the Lattice QCD (LQCD) and the Effective Field Theory (EFT).
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0.11 0.12 0.13

α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

Υ decays (NLO)

Figure 1.2: Summary of αs(mZ0) measurements and world average value.

LQCD is a numerical approach. The theoretical idea underlying this
framework is to discretize QCD equations of motion on a 4-dimentional space-
time lattice and to solve them by a large scale of numerical simulations on
big computers. The discretization is removed by letting the lattice spacing
tend to zero; the continuum is then restored.
Even if LQCD theoretical principles were originally proposed in 1974, this
approach has made enormous progress over the last decades, mainly due to
the empowerment of the computer technology.

An EFT is a model equivalent to QCD in a certain energy range that can
be formulated under a series of approximations. One typical approximation
is the assumption of negligible mass of the up, down and strange quarks
with respect to ΛQCD [5]. An EFT can in some cases provide a solution
in calculation from QCD where several dynamical scales are involved; for
example combining LQCD with EFT technique has turned out to be a very
powerful method. In recent years a variety of EFTs with quark and gluon
degrees of freedom have been developed.
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1.3 Charm physics and D mesons

The D mesons family is a family of hadrons containing the c quark. It is
formed by the D0, D+, D∗+ and Ds mesons and their antiparticles.

The existence of hadrons with the charm quantum number had been
predicted in 1963 because the existence of a further quark was necessary
to perform the normalization of the weak interactions in the framework of
non-abelian gauge theories [6, 7].

In order to keep the theory consistent and manage consequent possible
anomalies, the main features of charm quarks (c) were predicted to be as
follows:

• c quarks have the same coupling as u quarks, but their mass is much
heavier, namely about 2 GeV/c2;

• they form charged and neutral hadrons, of which (in the C = 1 sector)
three mesons and four baryons decay only weakly with lifetimes roughly
10−13 s (they are considered indeed stable);

• charm decay produces direct leptons and preferentially strange hadrons.

The researches on the charm physics during the last 50 years have shown
how these assumptions were extraordinary reliable.

c quark occupies a unique place among up-type quarks, because it is the
only up-type quarks whose hadronization (and the consequent decay) can be
studied. This is due to the fact that, on the heavy side of the spectrum, the
t quark decays before it can hadronize, while on the lighter side, the u quark
can be considered stable. u quark forms only two kinds of neutral hadron
which decay weakly, neutrons and pions: the decay of the former is due to
the weak decay of quark d and, in the latter, quark and antiquark of the first
family annihilate each other.

The charm is an up-type quark, so loop diagrams do not involve the
heavy top quark; the SM prediction for charm hadronization and decay is
then smaller by many orders of magnitude than the down-type corresponding
processes. Intermediate meson-states are expected to contribute at the 10−3
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level and thus overshadow the short-distance contributions. As mentioned,
SM physics lowers the probability to observe loop-mediated processes; on the
contrary, new physics may enhance them and it could be easier to detect in
the charm system than in the bottom system. Experimentally, charm shows
more distinct signatures than the B-system because c branching fractions
into fully reconstructed modes are up to the 10 % level, while the product
of branching ratios to fully reconstruct a b decay is typically at the 10−4

level. Very specific tags are present in the charm decay; for example, in the
D∗+ → D0π+ decay, the slow pion tags the D0 flavor at production with an
efficiency of almost 100 %.

Mixing of the neutral mesons can occur in the charm system through
box-diagram, just like the kaon and the B systems. These box-diagram can
involve only d, s and b quarks because c quark is an up-type quark, thus,
again, the large contribution of the heavy t quark is missing.

In the charm framework, the mixing of neutral mesons is studied in the
case of D0 − D̄0 oscillations. The mixing is describe in terms of two pa-
rameters: xD ≡ ∆MD

ΓD
and yD ≡ ∆ΓD

2ΓD
, where ∆MD is the mass difference

between D0 and D̄0 (∆MD ≤ 1.3 × 10−13 GeV) and ∆ΓD is the difference
between their decay rate. The box-diagram predictions for xD and yD are at
the 10−5 level [8]. New physics should have a little effect on ∆ΓD, but may
have significant contributions to ∆MD up to values of xD at the 1 % level.
Contributions from non-perturbative QCD tend to increase ∆ΓD but the ef-
fect on ∆MD is small. An observation of the xD at the percent level together
with a strong limit on yD at the 10−3 level would be a strong indication for
new physics.

The LHCb collaboration recently announced preliminary evidence for CP
violation in D0 meson decays [9]. They reported a 3.5σ evidence for a non-
zero value of the difference between the time-integrated CP asymmetries in
the decays D0 → K+K− and D0 → π+π−. They evaluated ∆aCP to be
∆aCP ≡ aK+K− - aπ+π− = −(0.82± 0.21± 0.11)%, where:

aK+K− =
Γ(D0 → K+Ki−)− Γ(D̄0 → K+K−)

Γ(D0 → K+K−) + Γ(D̄0 → K+K−)
(1.12)
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and
aπ+π− =

Γ(D0 → π+π−)− Γ(D̄0 → π+π−)

Γ(D0 → π+π−) + Γ(D̄0 → π+π−)
. (1.13)

The CDF Collaboration is going to publish a similar result soon.

1.4 Charmed hadrons production and D0 cross
section measurements

Recently, thorough experimental and theoretical studies have been made
about the inclusive production of charmed hadrons (Xc) at hadron collid-
ers. Important results on the charm physics come from the PHENIX and
the STAR experiments at the BNL Relativistic Heavy Ion Collider (RHIC).
Both collaborations reported the measure of non-photonic electron produc-
tion through charm and bottom decays in pp, dAu and AuAu collisions at
√
s = 200 GeV [11, 12]. The STAR Collaboration also presented mid-rapidity

open charm spectra from direct reconstruction of decays in dAu collisions and
indirect e+e− measurements via charm semileptonic decays in pp and dAu
collisions at the center of mass energy,

√
s, of 200 GeV [13]. The main disad-

vantage of these results is that RHIC data only covered a very limited low-pT
range.

The latest result concerning the charm physics is the measurement of the
inclusive open charm production in p-p and Pb-Pb collision performed by
the ALICE collaboration [14]. A preliminary measurement of the D0, D∗+

and D+ differential cross sections at
√
s = 7 TeV was released. The total

charm production cross section was estimate using the extrapolation of the
D meson cross section measurements to the full kinematic phase space. Fig
1.3 shows the pp → cc̄ cross section as a function of centre of mass energy
for various experiments.

In 2003, the CDF Collaboration published the measurements of the dif-
ferential cross sections for the inclusive production of charmed hadrons as a
function of the transverse momentum for pT ≥ 5.5 GeV/c [10], at

√
s = 1.97

TeV. Fig. 1.4 shows CDF differential cross section measurements for the
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Figure 1.3: Total charm production cross section as a function of centre of
mass energy for various experiments [14].

mesons of the D family.
From the theoretical point of view, the cross section for the inclusive produc-
tion of Xc mesons can be calculated by the convolution of universal parton
distribution functions (PDFs) and universal fragmentation functions (FFs)
with calculable hard-scattering cross sections via perturbative approach. The
non-perturbative part in the form of PDFs and FFs is input by fits from
other processes. The PDFs and FFs are universal, so unique predictions for
the cross section of the inclusive production of heavy-flavored hadrons are
guaranteed.
The results of this method in the case of Xc production at the energy avail-
able at the Tevatron [15, 16] were compared to CDF results and a not so
good agreement between theory and experiment was found. The experimen-
tal central data points tend to overlap the central theoretical prediction in
most of the considered pT range, but in the lower end of the spectrum, they
tend to overshoot the prediction, even by a factor of about 1.5. For all meson
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species, the experimental and theoretical uncertainties overlap.

Figure 1.4: The differential cross section measurements for the mesons of the
D family at

√
s = 1.97. The inner bars represent the statistical uncertainties;

the outer bars are the quadratic sum of the statistical and systematic uncer-
tainties. The solid and dashed curves are the theoretical predictions, with
uncertainties indicated by the shaded bands. No prediction was available for
the D+

S production.

The measurement of the D0 meson inclusive differential production cross
section extended to the low pT range (1.5 ≤ pT ≤ 9.5 GeV/c) is going to be
published soon. The results of this measurement are shown in Fig. 1.5.

New measurements in the region where αs becomes too big for perturba-
tive calculation and the color confinement behavior is not well understood
are crucial to understand and model non-perturbative QCD. With this work,
we want to extend the previous CDF published measurement of D0 → Kπ

cross section to low pT and lower center of mass energy, in order to provide
an important information about the non-perturbative region.

During the years of operation, the Tevatron collider collected about 10

fb−1 of data at
√
s = 1.96 TeV. Before the final shut down, additional scans at

lower center of mass energies were performed:
√
s = 300 GeV and

√
s = 900

GeV. To this day, the Tevatron sample with
√
s = 900 GeV is the largest

sample at this center of mass energy ever collected in a hadronic collider:
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Figure 1.5: D0 meson inclusive differential production cross section at√
s = 1.97 TeV as a function of the transverse momentum (only statisti-

cal uncertainties are shown).

this give us the chance to perform the measurement of the D0 production
cross section at two different energies.

The Tevatron experimental setup guarantees the uniqueness of this mea-
surement: in fact, even if LHC experiments are able to probe the same pT
range and can run at the same energy, the different initial state means dif-
ferent conditions, implying the possible existence of other processes in the
unknown region under exam.



Chapter 2

The Tevatron Collider and the
CDF II experiment

2.1 The Tevatron Collider

In the following paragraphs, we will briefly describe the default config-
uration of the Tevatron Collider. This configuration has been used during
almost the whole duration of the Tevatron operation. For this analysis, we
used a data sample collected with a special configuration; the differences be-
tween the two configurations will be discussed in the next chapter.

The Tevatron Collider is a high energy accelerator located at the Fermi
National Accelerator Laboratory (FNAL or Fermilab), about 50 km West
from Chicago, Illinois, US.
This collider is a circular superconducting magnets synchrotron, with a 1 km
radius. The Tevatron makes bunches of protons (p) collide against bunches
of antiprotons (p̄) with the same energy: during the years of operation, the
Tevatron collected events with a center of mass energy of

√
s = 1.96 TeV,

√
s = 1.8 TeV,

√
s = 900 GeV and

√
s = 300 GeV. In order to reach the final

energy in the collision, protons and antiprotons are prepared and accelerated
in several steps, which are shown in Fig.2.1.

20
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Figure 2.1: View of the Fermilab Tevatron collider.

2.1.1 Luminosity and center of mass energy

The center of mass energy,
√
s, and the instantaneous luminosity, L,

are the key parameters that determine the performance of a collider. In
the measurement of the cross section of a given process, the luminosity is
fundamental because it is the coefficient of proportionality between the rate
of the process, R, and its cross section σ:

R [events s−1] = L [cm2s−1]× σ[cm2]. (2.1)

It is important to notice in equation 2.1 how the rate is achieved: it is
the product of σ, which is set by the physics of the process, and L, that is
purely due to the machine.

The expected number of events produced, n, in a finite time ∆T is ob-
tained by the time integration of the rate; the cross section is constant in
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time, so the introduction of the time integral of the luminosity (integrated
luminosity) is very usefull, because we can write

n(∆T ) = σ

∫
∆T

L(t) dt. (2.2)

As mentioned above, L is purely due to the machine, and, assuming an
ideal head-on pp̄ collision, it is defined as follows in collider experiments:

L = 10−5 NpNp̄Bfβγ

2πβ∗
√

(εp + εp̄)x(εp + εp̄)y
H(σz/β

∗) [1030cm−2s−1], (2.3)

where Np and Np̄ are the average number of protons (Np ≈ 2.78× 1012) and
antiprotons (Np̄ ≈ 8.33 × 1011) in a bunch, B is the number of circulating
bunches in the ring (B = 36), f is the frequency (f = 47.713 kHz), εp and
εp̄ are the 95% normalized emittances of the beams (εp ≈ 18π mm mrad and
εp̄ ≈ 1π mm mrad after the injection) and H is an empiric factor, function of
the ratio between the longitudinal r.m.s. width of the bunch (σz ≈ 60 cm)
and “beta function”1 calculated at the interaction point (β∗ ≈ 30 cm).

The production of p̄ has a low efficiency; the creation of collimated p̄

bunches and their transfer through the subsequent accelerator stages are
difficult: that is why Np̄ is the strongest limiting factor of the Tevatron lu-
minosity.

The accessible phase space for the production of resonances in the final
state is set by the center of mass energy,

√
s; indeed,

√
s determines the

upper limit for the masses of the particles produced in the pp̄ collision.
The highest value of

√
s reached by the Tevatron Collider is 1.96 TeV. Further

details about the Tevatron Collider can be found in [17].

2.1.2 Proton and antiproton beams

The process of protons acceleration develops in gradual stages of acceler-
ation. Gaseous hydrogen is ionized in order to form H− ions; these ions, after
being boosted to 750 keV by a Cockroft-Walton accelerator, are injected to

1The beta function (or betatron function) is the function that parametrize all the linear
properties of the beam.
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the Linac linear accelerator that increases their energy up to 400 MeV. Then,
H− ions pass through a carbon foil and lose the two electrons. The resulting
protons are then injected into a rapid cycling synchrotron, called Booster;
at this stage protons reach 8 GeV of energy and are compacted into bunches.
The next stage of acceleration is the Main Injector, a synchrotron which
accelerates the bunches up to 250 GeV. In the Main Injector, several bunches
are merged into one and used for the injection in the last stage.
The resulting bunches are then transferred to the Tevatron. The protons are
forced on an approximately circular orbit by a magnetic field of 5.7 T and
they reach the final energy.

Bunches of protons are used also for the production of the antiprotons.
When protons bunches in the Main Injector reach 120 GeV, some of them are
deviated to a nickel or copper target. Collisions produce spatially wide-spread
bunches of antiprotons which are then focused into a beam via a cylindrical
lithium lens that separates p̄ from other charged interaction products. The
bunch structure of the emerging antiprotons is similar to that of the incident
protons.
The antiprotons bunches are stored in the Debuncher storage ring. In the
Debuncher, stochastic cooling stations reduce the spread of the p̄ momentum,
but a constant energy of 8 GeV is maintained.
At the end of this process, the antiprotons are stored in the Accumulator
(see Fig. 2.1), where they are further cooled and stored until the cycles of the
Debuncher are completed. The p̄ are injected into the Main Injector when
their current is sufficient to create 36 bunches with the required density. In
the Main Injector, the energy of p̄ reaches 150 GeV. They are then transferred
to the Tevatron where 36 bunches of protons are already circulating in the
opposite direction and they reach the final energy.

During the run, the antiproton production and storage does not stop.
When the antiproton stack is sufficiently large (' 4 × 1012 antiprotons) and
the circulating beams are degraded, the detector high-voltages are switched
off, the store is dumped and a new one begins.

The dead time between beam abortion and a new store is typically about
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2 hr. During this time, calibrations of the sub-detectors and test runs with
cosmics are usually performed.

2.1.3 The luminous region

The pp̄ collisions take place at two interaction points: DØ, where the
homonym detector is locates, and BØ, home of CDF II. Special quadrupole
magnets are located at both extremities of the detectors along the beam pipe
in order to maximize the luminosity at the interaction points by reducing the
transversal section of the beams. On the longitudinal plane, i.e. along the
beam axis, the distribution of the interaction region fits roughly a Gaussian
(σz ≈ 28 cm) and its center is shifted on the nominal interaction point by
the fine tuning of the squeezers. The beam profile in the transverse plane is
almost a circumference; its distribution fits roughly two Gaussian with a rms
of σT ≈ 28 µm.

Only when the beam profile is narrow enough and the conditions are
safely stable, the detectors are turned on and the data acquisition starts.

The bunches cross every 396 ns.
The “pile up”, i.e. the number of overlapping interactions for each bunch

crossing, is a function of the instantaneous luminosity and follows a Poisson
distribution (see Fig. 2.2). The average pile up is approximately 10 when the
luminosity is at its peak (L ≈ 3× 1032[cm−2s−1]). The luminosity decreases
exponentially during the run-time, because of the beam-gas and beam-halo
interactions.

2.1.4 Tevatron status

From February 2002 to February 2010, at the center of mass energy
√
s =

1.96 TeV, about 6.7 fb−1 were recorded on tape and the luminosity was, at
the beginning of a run, on average about 3.8 × 1032[cm−2s−1], with peaks at
4 × 1032[cm−2s−1] (See Fig.2.3).

The trend of Tevatron’s integrated and initial luminosity as function of
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Figure 2.2: Average number of interactions per crossing as a function of
the luminosity (cm−2s−1) and of the number of bunches circulating in the
Tevatron.

store number2 is shown in Fig. 2.4. The total amount of data collected
during the Tevatron activity is about 10.3 fb−1 (“acquired” on tape about 8.5
fb−1).

2.2 The CDF II experiment

In the following paragraphs, we will describe the coordinates system and
principal notations of the CDF II experiment. An overview of the whole
detector and a description of the subtdetectors used in this analysis are then
presented.

The CDF II detector is a large multi purpose solenoidal magnetic spec-
trometer equipped with a tracking system, full coverage projective calorime-

2The store number is progressive in time, so the luminosity as a function of the store
number is, in practice, the trend of the luminosity over the time.
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Figure 2.3: Initial luminosity as a function of store number.

Figure 2.4: Integrated luminosity as a function of store number.

ters and fine-grained muon detectors. The aim of the detector is to determine
energy, momentum and, whenever possible, the identity of a broad range of
particles produced in the pp̄ collisions.

CDF original facility was commissioned in 1985, but the detector has
been constantly improved during its activity. After 1995, the operation of
the upgraded detector is generally referred to as Run II. Both 2-D and 3-D
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representations of CDF II detector are shown in Fig.s 2.5 and 2.6.

Figure 2.5: View of one half of the CDF II detector in the longitudinal
section.

2.2.1 Coordinates system and notations

The Fig. 2.7, shows the right-handed Cartesian coordinates system em-
ployed in CDF II. The origin of the frame is assumed to coincide with the
BØ nominal interaction point and with the center of the drift chamber.

The proton direction (east) defines the positive z-axis which lies along
the nominal beam line. The (x, y) plane is therefore perpendicular to both
protons and antiprotons beams. The positive y-axis points vertically upward
and the positive x-axis points radially outward with respect to the center
of the ring, in the horizontal plane of the Tevatron. Neither the protons
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Figure 2.6: 3D view of the CDF II detector.

Figure 2.7: CDF II Cartesian coordinates system.

beam nor the antiprotons beam is polarized. As a consequence, the resulting
physical observations are invariant under rotations around the z-axis. This
invariance makes a description of the detector geometry in cylindrical (r, φ, z)

coordinates system very convenient. Throughout this thesis,we use the word
longitudinal to indicate the positive direction of the the z-axis and the word
transverse to indicate the plane perpendicular to the proton direction, i.e.
(x, y) ≡ (r, φ) plane.

Protons and antiprotons are composite particles, so the actual interaction
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occurs individually between their partons, that is between gluons, valence or
sea quarks. Even if the energy of the colliding (anti)proton is well know,
each parton carries a fraction of the (anti)proton momentum which is not
measurable on an event-by-event basis. The momenta of the colliding par-
tons along ẑ can be thus very different: as a consequence, the center-of-mass
of the parton-level interaction may gain a large speed in the longitudinal
component.

In collision experiments, the variable rapidity is often used. Rapidity is
defined in Eq. 2.4

y =
1

2
ln
[
E + p · cos(θ)
E − p · cos(θ)

]
, (2.4)

where (E, ~p) is the energy-momentum four-vector of the particle. Rapidity
is invariant under ẑ boosts and it can be used as an unit of relativistic
phase-space. It transforms linearly under a ẑ boost to an inertial frame with
speed β. In fact, y → y′ ≡ y + tanh−1(β), therefore y is invariant since
dy ≡ dy′. However, from the definition 2.4 it is clear that the measurement
of the rapidity requires a detector capable of accurately measuring energy
and identifying particles, because of the mass term entering E. In order to
put mass out of the equation, when the ultrarelativistic (p � m) limit is
satisfied, it is preferred to use the approximate expression η instead of y,
usually valid for products of high-energy collisions:

y
p�m−−−→ η +O(m2/p2), (2.5)

in fact, the pseudo-rapidity η is only function of θ:

η = −ln tan
(
θ

2

)
. (2.6)

As already mentioned, along the z-axis, the actual interaction region is
distributed around the nominal interaction point with about 28 cm r.m.s
width, so it is necessary to distinguish the detector pseudo-rapidity, ηdet,
measured with respect to the (0,0,0) nominal interaction point, from the
particle pseudo-rapidity, η, measured with respect to the position of the real
vertex where the particle originated.
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An other commonly used variable is the transverse component of the
momentum with respect to the beam axis (pT )

~pT ≡ (px, py)→ pT ≡ p · sin(θ). (2.7)

2.2.2 Detector overview

A comprehensive description of the detector and its subsystems is given
in [18].

As one can see in Fig. 2.5, CDF II is an approximately cylindric assembly
of sub-detectors. Its dimensions are about 15 m in length, about 15 m in
diameter and its weight about 5000 ton.

An accurate description of the final state’s particle in energetic hadronic
collisions is quantitatively well obtained by the use of (pseudo)rapidity, trans-
verse component of the momentum and azimuthal angle around this axis:
this is the reason for the CDF II cylindrical symmetry both in the azimuthal
plane and in the forward (z > 0) – backward (z < 0) directions.

Each CDF II sub-system is designed to perform a different task. The
principal subsystems are listed below from the inner to the outer of the
detector:

• Tracking system: it performs the 3-D reconstruction of charged tracks
path throught an integrated system consisting of three silicon inner
subdetectors and a large outer drift chamber, all contained in a super-
conducting solenoid.

• Time Of Flight system: it is a cylindrical array made of scintillating
bars that allows particle identification via the time of flight method.
The TOF is also contained in the solenoid.

• Calorimeters: outside the solenoid, electromagnetic and hadronic calori-
meters measure respectively the energy of photons and electrons and
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the energy of hadronic particles using the shower sampling technique.
The basic structure consists of alternating layers of passive absorber
and plastic scintillator.

• Muon system: it is CDF II outermost system and performs muons
identification. It consists in scintillating counters and drift tubes.

The set of all these components guarantees the possibility of CDF II to
perform a wide range of measurements, including high resolution tracking
of charged particle, electron and muon identification, low momentum π/K

separation, precise secondary vertices proper time measurements, finely seg-
mented sampling of energy flow coming from final state hadrons, electrons
or photons, identification of neutrinos via transverse energy imbalance.

Another fundamental feature of CDF II is the capability to monitor the
instantaneous luminosity. This is achieved by the use of Cherenkov Lumi-
nosity Counters (CLC).

CDF II solenoid produces a solenoidal magnetic field of 1.4 T in the region
with r ≤ 150 cm and |z| ≤ 250 cm.

The detector is conventionally divided into two main sections of pseudo-
rapidity: the central region, where the tracking is contained, and the forward
region. In the following, if not otherwise stated, we shall refer to the cen-
tral region as the volume contained in |ηdet| < 1, while the forward region
indicates the detector volume comprised in 1 < |ηdet| < 3.6.

2.2.3 Tracking system

Fig. 2.8 shows CFD II tracking apparatus: the three-dimensional track-
ing of charged particle is performed through an integrated system consisting
of three silicon inner subdetectors (LØØ, SVX II and ISL ) and a large outer
drift chamber (COT). These subdetectors are all contained in the supercon-
ducting solenoid.

2.2.3.1 Layer ØØ (L ØØ)

The layer of the microvertex silicon detector closest to the beam pipe
is Layer ØØ (LØØ) (see Fig. 2.9). It consists of single-sided, radiation-
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Figure 2.8: Elevation view of one quadrant of the inner portion of the CDF
II detector showing the tracking volume surrounded by the solenoid and the
forward calorimeters.

2.2 cm

Figure 2.9: LØØ arrangement in transversal view.

tolerant, AC-coupled silicon strip detectors.LØØ covers longitudinally the
beryllium beam pipe along 80 cm. Layer ØØ provides excellent coverage
with minimal material inside the tracking volume, improving the impact
parameter resolution and the B-tagging efficiencies.
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The silicon sensors of LØØ can be biased to very high voltages that man-
tain a good signal-to-noise ratio even after high integrated radiation dose
(O(5 MRad)).

The sensors are installed at radii of 1.35 cm and 1.62 cm in direct contact
with the beam pipe. The proximity to the beam pipe, which guarantees high
resolution measurements of the primary and decay vertexes, is allowed by
the radiation hardness of such sensors.

The LØØ strips are located parallel to the beam axis and provide the
first sampling of tracks in the r−φ plane. The resolution of the r−φ impact
point for charged particles is about 10 µm.

The LØØ mass is about 0.01 · X0 in the region with the cooling pipes,
while it reduces to 0.006 ·X0 in the region with sensors only.

2.2.3.2 Silicon VerteX detector II (SVX II)

The Silicon VerteX detector II (SVX II) is a fine resolution silicon mi-
crostrip vertex detector which provides five 3D samplings of tracks in the
transversal region between 2.4 and 10.7 cm from the beam (see Fig. 2.8).

Fig. 2.10a shows SVX II geometry: the detector is cylindrical, coaxial
with the beam and segmented along z into three 32 cm long mechanical
barrels. The total length of 96 cm assures a complete geometrical coverage
within |ηdet| < 2.

Each barrel comprises 12 azimuthal wedges each of which subtends ap-
proximately 30◦. In order to allow the wedge-to-wedge alignment, the edges
of two adjacent wedges slightly overlap. Each wedge consists of 5 concen-
tric and equally spaced silicon layers sensors installed at radii 2.45 (3.0), 4.1
(4.6), 6.5 (7.0), 8.2 (8.7) and 10.1 (10.6) cm from the beam as shown in Fig.
2.10b3.

Independent readout units, called ladders host sensors in a layer. Each
ladder is composed by two double sided rectangular 7.5 cm long sensors and

3Half of the wedges are closer to the beam than the other half because their edges
must overlap. The numbers in brackets indicate the distance from the beam of the further
wedges’ layers.
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(a)

(b)

Figure 2.10: (a) SVX II view in the (r, φ) plane. (b) view of SVX II three
instrumented mechanical barrels.

by the read out electronics unit.
SVX II active surface consists of double-sided, AC-coupled silicon sensors.

In each sensor’s side, the different possible orientations of strips are three:

- strips oriented parallel to the beam axis, called r − φ (axial).

- strips rotated by 1.2◦ with respect to the beam axis, called Small Angle
Stereo (SAS).
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- strips oriented in the transverse plane, called 90◦ stereo.

All the five layers have axial strips on one side, three have 90◦ stereo on
the other side and two have SAS strips.

A radiation-hard front-end chip, called SVX3D, collects the charge pulse
from the strips. Only signals above a threshold are processed: SVX3D op-
erates readout in “sparse-mode”. When a channel is over the threshold, the
signal of the neighbor channels is also processed in order to cluster the hits.

SVX II single hit efficiency greater than 99% and the measured average
signal-to-noise ratio is S/N ≥ 10, while the resolutions of the impact pa-
rameter for central high momentum tracks are σφ < 35 µm and σz < 60
µm.

The average mass of SVX II corresponds to 0.05 ·X0.

2.2.3.3 Intermediate Silicon Layer (ISL)

On the outside of SVX II, an other silicon tracker is placed: the Interme-
diate Silicon Layer detector, ISL (see Fig. 2.11). ISL covers the polar region
of |ηdet| < 2, the same region covered by SVX II.

Figure 2.11: View of ISL three instrumented mechanical barrels.
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ISL can be roughly divided in three regions: a central region and two for-
ward regions. The central region consists of a single layer of silicon installed
over a cylindrical barrel at radius of 22 cm, while the forward regions consist
of two layers of silicon installed on concentric barrels at radii of 20 and 28
cm. In order to match SVX II wedge, each silicon layer of ISL is azimuthally
divided into 30◦ wedge.

By analogy with SVX II, ISL basic readout unit is the ISL ladder. The
main difference between these two types of ladders is that ISL ladder is made
with three sensors wire bonded in series, instead of the SVX II two. Thus, the
resulting total active length of ISL ladder is 25 cm. ISL sensors are double
sided AC-coupled, with axial strips on one side and SAS strips on the other.
The sensors dimensions are 5.7×7.5 cm2 wide and 300 µm thick. As in SVX
II, the charge pulse from each strip is read by SVX3D chips.

ISL average mass is 0.02 ·X0 for normally incident particles.

2.2.3.4 Central Outer Tracker (COT)

Fig.2.12 shows the outermost tracking subdetector of CDF II: a large
open cell drift chamber called the Central Outer Tracker (COT).

The COT is a cylindrical detector, coaxial with the beam and it extends
radially, within the central region, between the radius of 40 cm and 138 cm
from z-axis.

The chamber contains 96 radial layers of wires arranged into 8 superlayers
(SL), see Figure 2.12. Each SL contains 12 sense wires (anode) spaced 0.762
cm apart, so it samples the path of a charged particle at twelve radii. The
wires of the 8 SL are not oriented all in the same way: in order to reconstruct
the path of a charged particle in the r − z volume, the wires of four SL are
oriented parallely to the beam axis (axial SL) and the wires of the remaining
four SL are oriented either +3◦ or -3◦ with respect to the beamline (stereo
SL). The axial SL are radially interleaved with the stereo SL.
Each superlayer is azimuthally segmented into open drift cells. Figure 2.13
shows the view of a drift cell: a row of 12 sense wires alternating with 13
potential wires. The potential wires optimize the electric field intensity in
the SL controlling the gain on the sense wires. The field panel closes the
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Figure 2.12: A 1/6 section of the COT end-plate. The enlargement shows in
details the slot were wire planes (sense) and field sheet (field) are installed.

cell along the azimuthal direction and defines the fiducial volume of a cell:
it is the cathode of the detection circuit. Mylar strips carrying field-shaping
wires, called shaper panels, close mechanically and electrostatically the cells
at the radial extremities. The electric field strength in the cell is 2.5 kV/cm.

In the chamber, the crossed electrical and magnetic field as well as the
characteristics of the gas mixture cause an angular shift of the particle drift
path. In order to balance this shift, the wire planes are 35◦ azimuthal tilted
with respect the radial direction. The tilted-cell geometry shows other bene-
fits: the calibration of the drift-velocity is easier and the left-right ambiguity
for tracks coming from the origin is removed. An overview of the COT main
characteristics is presented in Tab 2.1.

A preamplifier shapes and amplifies the analog pulses from the COT sense
wires. To perform the dE/dx measures, the discriminated differential output
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Figure 2.13: A view of an axial section of three cells in super-layer 2. The
arrow shows the radial direction.

Gas Mixture Ar(50%)/Ethane(35%)/CF4(15%)
Electron drift speed about 100 µm/ns
Maximum drift time about 100 ns

Track efficiency 99%
Single hit resolution σhit ' 140 µm

pt resolution σpT /p
2
T ' 0.0015 c/GeV

Mass 0.016 ·X0 for normally incident particle

Table 2.1: COT characteristics.

is used because it encodes charge information in its width. A TDC is used
to record the leading and trailing edges of the signals in 1 ns bins.

2.2.3.5 Tracking performance.

In the tracking system, a uniform axial magnetic field is present, so the
trajectory of a charged particle produced in the interaction point with non-
zero velocity is described by an helix with the axis parallel to the magnetic
field.
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Fig. 2.14 shows a view of the helix parametrization, which requires the
definition of five parameters:

• C: signed helix half-curvature, defined as C ≡ Q
2R

, where Q is the sign
of the electric charge of the particle and R is the radius of the helix.
The relation between C and the transverse momentum is: pT = cB

2|C|

(where B is the intensity of the magnetic field).

• ϕ0: direction of the track at the point of closest approach to the beam.

• d0: signed impact parameter, i.e. the distance between helix and the
origin at closest approach, defined as

d0 ≡ Q · (
√
x2
c + y2

c −R), (2.8)

where (xc, yc) are the coordinates of the primary vertex of interaction
in the transverse plane.

• cot(θ): cotangent of the polar angle at closest approach distance. This
is directly related to the longitudinal component of the momentum:
pz = pT · cot(θ).

• z0: z position of the point of closest approach to the origin.

The trajectory of a charged particle satisfies the following equations:

x = r · sin(ϕ)− (r + d0) · sin(ϕ0) (2.9)

y = −r · cos(ϕ) + (r + d0) · cos(ϕ0) (2.10)

z = z0 + s · cot(θ) (2.11)

where s is the projected length along the track, r = 1/2C and ϕ = 2Cs+ϕ0.
When a charged particle passes through the tracking system, the detector

reconstructs, along the physical trajectory of the particle, a set of spatial
measurements (“hits”) by clustering and pattern-recognition algorithms. In
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Figure 2.14: View of the helix parametrization

order to reconstruct the trajectory, the hits are fitted with a helical fit, which
determines the five above parameters and finally define a “track” object.
The helical fit takes into account non-uniformities of the magnetic field and
scattering in the detector material.

Only tracks reconstructed with both silicon and COT hits (SVX+COT
tracks) were used for this analysis. The track fitting for all SVX+COT tracks
starts with the fit in the COT: the fit is then extrapolated inward to the sil-
icon. In the COT the track density is lower than in the silicon, because of
its greater radial dimension, consequently the probability of hits accidental
combination in the track reconstruction is smaller. This way of performing
the fit is fast and efficient; the resulting tracks have high purities.

COT performance. The COT efficiency for tracks is typically 99% and
all the COT channels worked properly until the last the Tevatron run. Cos-
mic rays are exploited to mantain the internal alignments of the COT cells
within 10 µm. The wires mechanical curvatures effects due to gravitational
and electrostatic forces are kept under control within 0.5% by equalizing the



2.2 The CDF II experiment 41

difference of E/p between electrons and positrons as a function of cot(θ).
The single-hit resolution is about 140 µm, including a 75 µm contribution
from the uncertainty on the measurement of the pp̄ interaction time. The
typical resolutions on track parameters for tracks fit with no silicon informa-
tion or beam constraint are listed in Tab 2.2

resolution value
σpT /p

2
T 0.0015 c/GeV

σϕ0 0.035◦

σd0 250 µm
σθ 0.17◦

σz0 0.3 cm

Table 2.2: COT resolution on track parameters.

Performance with the silicon detectors. The reconstruction of the hits
in the silicon detector is fundamental to improve the impact parameter res-
olution of tracks. In fact, with the measure in the silicon, the resolution
may reach σd0 ≈ 20 µm (not including the transverse beam size)4. This
value and the value of the transverse beam size ( σT ≈ 28 µ) are ones of the
most important factors for the study of the transverse decay-lengths of heavy
flavors. In fact, these resolutions are sufficiently small with respect to the
typical transverse decay-lengths (a few hundred microns) to allow separation
between the decay vertices and the primary vertices of the collisions.

With the use of the silicon tracker, also the stereo resolutions are im-
proved up to σθ ≈ 0.06◦, and σz0 ≈ 70 µm. On the contrary, the transverse
momentum and the azimuthal resolutions remain approximately the same of
COT-Only tracks.

2.2.4 Other CDF II subdetectors

For an accurate description of the CDF II subdetectors not used in this
analysis (TOF system, calorimeters and muon system) see [18].

4The smallness of σd0 depend on the number and radial distance of the silicon hits.
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2.2.5 Cherenkov Luminosity Counters (CLC)

The luminosity (L) is a fundamental parameter to measure the physical
processes cross sections.

Given the the average number of inelastic interactions per bunch crossing
(< N >), the luminosity is inferred according to:

L =
< N > ·fb.c.

σTOT
(2.12)

where fb.c. is the bunch-crossing frequency and σTOT is the total pp̄ cross-
section at

√
s = 1.96 TeV. fb.c. is precisely known from the Tevatron radio

frequency. The total cross section at
√
s = 1.96 TeV is calculated from the

averaged CDF and E8115 luminosity-independent measurements at
√
s = 1.8

5E811 is an experiment about p-p̄ elastic scattering, situated at hall EØ of the Tevatron
beam line.

Figure 2.15: Views of the CLC system in the longitudinal and transverse
plans.
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TeV [19, 20] and extrapolated to
√
s = 1.96. Its value is σTOT = 81.90± 2.30

mb [21].

The measurement of < N > is performed at CDF through the Cherenkov
Luminosity Counters (CLC). These sub-detectors are two separate modules,
symmetrically placed in CDF II forward and backward regions: they cover
the 3.7 ≤ |ηdet| . 4.7 range (see Fig. 2.15).

Each module is composed by conical Cherenkov counters arranged in three
concentric layers around the beam-pipe. The Cherenkov counters point to
the nominal interaction region; they are 48 thin, 110–180 cm long, filled with
isobutane.

CLC Cherenkov angle, θC = 3.4◦, determines the momentum thresholds
for light emission: 9.3 MeV/c for electrons and 2.6 GeV/c for charged pions.
In the CLC, the signal due to the pp̄ interaction is generally larger than the
signal due to the beam halo or to secondary interactions because prompt
charged particles from the pp̄ interaction are more likely to walk through the
full counter length. Moreover, different particle multiplicities entering the
counters cause distinct peaks in the signal amplitude distribution. For this
reasons, the CLC measurement of < N > has 4.4% relative uncertainty in
the luminosity range 1031 ≤ L ≤ 1032 [cm−2s−1]. Combining this accuracy
with the relative uncertainty on the inelastic pp̄ cross-section, one finds that
the instantaneous luminosity is inferred with 5.8% relative uncertainty.

2.2.6 Trigger and Data AcQuisition (DAQ) system

An event is written on tape when at least one of the CDF II triggers
fires. Events are grouped into runs that are progressively labeled with a
Run Number ; a run is a period of continuous operation of the CDF II Data
Acquisition (DAQ).

Starting from partial information provided by the detector in real time,
the trigger system discards the uninteresting events. The production cross
section of physics of interest is way smaller than the total pp̄ inelastic one.
The task of separating the great majority of background events from the



2.2 The CDF II experiment 44

Figure 2.16: Functional block diagram of the CDF II system.

fraction of interesting events is fundamental.
The writing of events on permanent memories has a maximum rate of

about 100 Hz, while the Tevatron has an average collision rate of about
1.7 MHz, due to the 396 ns interbunch spacing; the CDF II trigger reduces
this acquisition rate, without losing the majority of events with a physical
interest.

The CDF II trigger is a multi-stage system: it is divided into three levels,
as one can see in Fig. 2.16. Each level has more accurate detector information
and more time for processing than the previous one; thus, it can choose
whether discarding the event received from the previous level or sending it
to the next level. The detector front-end electronics sends data directly to
Level-1; an event is permanently stored to memory if it passes the Level-3.

The read-out of the entire detector takes about 2 ms on average. When
the trigger is busy processing an event, it cannot record other events: this
causes the so called trigger deadtime. At the maximum luminosity, the per-
centage of events rejected because of the trigger deadtime is around 5%.
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2.2.6.1 Level 1 (L1)

Level 1 (L1) stage has the same clock of the Tevatron (about 1.7 MHz).A
fully pipelined front-end electronics for the whole detector is employed: every
396 ns, the buffer of a 42-cell long pipeline is written with the signal of each
CDF II channel. This method gives L1 more time to make its decision before
the buffer is cleared and the data are lost: 396×42 ns ' 16 µs.

L1 makes its decision processing on a simplified subset of data. A custom-
designed hardware reconstructs coarse information from the COT, the calo-
rimeters and the muon system, using three parallel streams. For each event,
two-dimensional tracks in the transverse plane, the total energy and and the
presence of muon are identified; these physical objects are called “primitives”,
because of their low resolution.

In the decision stage, the information from the “primitives” is analyzed
and more sophisticated objects, like muons, electrons or jets are formed.

The COT channels are processed by the eXtremely Fast Tracker (XFT).
In time with the L1 decision, XFT custom processor identifies two-dimensional
tracks in the (r, φ) plan of the COT. In order to do so, short segments of track
are firstly identified by a pattern matching. Then, if a coincidence between
segments crossing four super-layers is found, they are linked together into
full-length, two-dimensional tracks. The pattern matching consists in com-
paring a possible segment with a set of about 2,400 predetermined patterns.
These patterns are determined by the correspondence to all tracks with pT &

1.5 GeV/c originating from the beam line.
At L ≈ 1032 [cm−2s−1], the track-finding efficiency and the fake-rate with

respect to the off-line tracks are measured to be respectively 96% and 3%
for tracks with pT & 1.5 GeV/c. Of course, this parameters depend on the
instantaneous luminosity. For these 2-D tracks, the observed momentum
resolution is σpT /p2

T ≈ 0.017 c/GeV.
To keep or to reject an event, different combinations of requirements on

the reconstructed objects can be submitted to L1.
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2.2.6.2 Level 2 (L2) and Level 3 (L3)

The Level-2 (L2) trigger fulfills two subsequent tasks, the Event building
and the Decision.
L2 detector information is more complete than L1 detector information; thus,
the Event building reconstructs the event with L2 information. The Event
building process in parallel the calorimetric information and the tracking
information. Its clock is 10 µs.

Decision combines the outputs from L1 and L2 in order to decide whether
or not an event is sent to Level-3.
The maximum decision-making time (latency) of L2 is 20 µs for each event
and the output rate is about 300 Hz.

Level-3 (L3) is exclusively software-based. At L3, the events selected by
L2 are reconstructed, with full detector resolution. L3 codes and the offline
reconstruction codes are very similar to each other.

About 191 trigger paths can be implemented at L3: the trigger path is
the tool to define any particular sequence of L1, L2 and L3 selections. An
event that satisfied all the 3 levels requests is flagged with a particular trigger
path. Two events with different trigger paths fulfill different level requests,
even if same level request can be used by the two trigger paths.
Once the event is fully reconstructed and the integrity of its data is checked,
L3 decides whether or not the event is written on tape.
The size of an event is typically about 150 kbytes. The maximum storage
rate is about 20 Mbyte/s.
At the end of the three stages, the event output rate is about 75 Hz.

2.2.7 Operations and data quality

During the runs, the operation of the detector and the quality of the
on-line data taking was continuously controlled.

The main causes of data taking inefficiencies are two. At the beginning
of the runs, the detector was not empowered since the beam was proved to
be stable. In addition, problems related to trigger dead time, to detector or
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to DAQ may occur. The average data-taking efficiency was about 85%.
Quality inspections were applied on each run in order to guarantee homo-

geneous data-taking conditions. The running condition must undergo some
physics-quality standards; for these reasons, the fractions of data valid for
physics analysis were certified for each run.

The data-taking was immediately stopped if a malfunction of the detector
was registered. Then, corrupted data are more likely contained in very short
runs that are usually excluded on-line from physics analysis.

The CLC were operative during the whole data-taking of the physics-
quality data, thus an accurate integrated luminosity measurement has been
guaranteed; a set of luminosity and beam-monitor probe quantities were
constantly controlled to be within the expected ranges during the data taking.
On-line, shift operators ensured that L1, L2 and L3 triggers work correctly.
The operators also controlled other higher level quantities to be within the
expected ranges.

After the recording on tape of the data, all the data manipulations are
referred to as off-line processes.

2.2.8 Event reconstruction and analysis framework

The events collected by the DAQ and the simulated samples are stored
on tapes and analyzed with the Production reconstruction program.

The production process is the main off-line operation: high-level physics
objects (e.g. tracks, vertices, muons, electrons, jets, etc.) are reconstructed
by a centralized analysis from low-level information (e.g hits in the tracking
subdetectors, muon stubs, fired calorimeter towers, etc.).

Precise information about the detector such as calibrations, beam-line
positions, alignment constants, masks of malfunctioning detector-channels,
etc. etc. and more sophisticated algorithms are available during the produc-
tion. After the production, the size of an event typically increases of the 20%
because of the added information.
The production processing of all the data sets has been repeated every time
that improved detector information or new reconstruction algorithms became
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available.
Off-line, the exclusion of runs with software crashes during the production
or with generic problems takes place.

Analysis groups creates a set of ntupes in order to reduce the total amount
of data to a smaller data-set of interest.

The ROOT framework [24] is used to create these ntuples. The ROOT
framework is a tool of analysis written in C++ and commonly used by sev-
eral HEP experiments; it is the same environment used for all the analyses
preformed at CDF.

The ntuples used in this work are the Standard Ntuples (Stntuples) that
are used by the QCD group by default. Stntuples contains the events col-
lected by the triggers suitable for this analysis.



Chapter 3

Data selection

3.1 Low energy scans

With a view to the final shut down, the Tevatron collider performed a
series of scans at lower center of mass energies, especially addressed to QCD
studies.

The data taking lasted a week and collected data at two different center
of mass energies:

√
s = 900 GeV and

√
s = 300 GeV. The sample at the

energy of
√
s = 900 GeV is the largest sample ever collected at a hadronic

collider in these experimental conditions; these are the data used for the
present analysis.
The main features of these runs operation remained the same as the default
operation, but some configuration were changed. The number of bunches per
run was decreased to 3 bunches of protons and 3 bunches of antiprotons. The
instantaneous luminosity decreased as well. The decreasing of the luminosity
entails a diminishing of the pile up: for the low energy runs the pile up is
approximately zero. In addition, the trigger tables were optimized for QCD
studies in these new configurations.

3.1.1 Luminosity

As described in Sec. 2.2.5, the rate of the inelastic pp̄ events measured
by the CLCs provides the instantaneous luminosity.

The CLCs measure the average number of primary interactions, < N >;

49
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this quantity is related to the instantaneous luminosity L as stated in Eq.
2.12. In the low energy scan, the Tevatron average bunch crossing rate fb.c.
is about 48 kHz, while the total pp̄ cross section at the energy of 900 GeV is
determined according to data provided by the Particle Data Group [4, 25].

The total, elastic and inelastic cross sections at the energy of 900 GeV
are listed in Tab. 3.1. At this center of mass energy, the total cross section
is estimated by performing a linear interpolation [21].

√
s 900 GeV

σel. (mb) 13.7 ± 1.4 ± 0.0
σinel. (mb) 51.6 ± 1.6 ± 2.3
σTOT (mb) 65.3 ± 0.7 ± 2.3

Table 3.1: Elastic, inelastic and total cross section for pp̄ scattering at
√
s =

900 GeV [25]. The first uncertainty is statistical, the second systematic.

3.2 Online

The events used in this analysis are collected with the ZEROBIAS (ZB)
and the MINBIAS (MB) trigger paths; the features of these trigger paths
are described in detail in the following sections. With these two paths, no
trigger-related bias is introduced in the measured variables. On the contrary,
in the published CDF measurement of the D0 cross section [10], a trigger
selection with hard requests in terms of the transverse momentum of the
decay products was used: because of this bias, the minimum pT (D0) was set
to 5.5 GeV/c.

3.2.1 Zero Bias trigger

The first trigger path used to collect events for this analysis is the ZEROBIAS.
Any bunch crossing fires L1, but its rate is reduced by a prescale factor to
limit its output to disk. No further requests are applied at L2 and L3. This
trigger path do not use any CDF II sub-detector to fire; L1 fires whether or
not a hard scattering collision occurs. The data taking depends exclusively
on the Tevatron bunch crossing frequency. The combination of the prescale
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factor and the bunch cross rate gives a final output rate at L3 of about 50
Hz. About 6.6 millions of events were collected by this path.

3.2.2 Minimum Bias trigger

The second path used is MINBIAS. Unlike the ZEROBIAS, the MINBIAS re-
quires at least an inelastic pp̄ collision to trigger an event. At L1, Cherenkov
Luminosity Counters (CLC) are exploited to check if a collision occurs:
MINBIAS requires the coincidence of a signal1 in at least one East CLC and
one West CLC. No further requests are applied at L2 and L3.
The output rate at each trigger level is limited by prescale factors: their
combination gives a final output rate at L3 of about 400 Hz.
About 46.6 millions of events are collected by this path.

3.2.3 Samples overlap

During the data taking, all CDF trigger paths operate at the same time;
then, events might be triggered by both our paths, appearing twice in the
data sample. However, considering the effect of the prescale, the sample
overlapping has a negligible effect on our analysis key variables with respect
to their uncertainties; we find an overlap of the order of one event every
10,000. Our analysis checks for these occurrences and filters out the duplicate
events.

3.3 Offline

3.3.1 Good Run List

In Sec. 2.2.7 we described the standard CDF data-quality requirements
that define which runs can be used for physics analyses. The “good” runs are
grouped in the so called Good Run List (GRL).
Several GRLs are released by the analysis groups, depending on which sub-
detectors properly worked during the data-taking. The official list that con-
tains only runs where SVX II and the COT were working properly is used for

1 The minimum threshold for claiming a CLC signal is 250 ADC counts.
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this analysis, because only SVX+COT tracks were employed. In fact, on one
hand COT stand-alone tracking do not provide a sufficient impact parameter
resolution of our aim; on the other hand, silicon stand-alone tracking is useful
in the region 1 ≤ |η| ≤ 2, where the COT coverage is incomplete. In this
analysis, however, we reject tracks with |η| > 1, because the reconstruction
efficiency is too low. In the central region of interest, only track with a pT
< 0.28 GeV/c have SVX-Only informations, but this pT value is well below
our minimum request.

The ZB and MB sample are reduced after the GRL request: to about 6.0
millions (ZB sample) and to about 42.0 millions (MB sample).

3.4 D0 → Kπ at CDF II

The aim of this work is to identify the signal of the D0 mesons decay
in the channel D0 → Kπ; with this notation, we consider both the charged
conjugated: D0 → K−π+ and D̄0 → K+π−. This is the first step to measure
the differential production cross section, defined as follows:

dσD0→kπ

dpT
(pT ; |y| ≤ 1) =

ND0+ND̄0

2
(pT )

L · εtrig · εrec(pT ) ·Br(D0 → Kπ)

∣∣∣
|y|≤1

(3.1)

where:

• ND0 and ND̄0 are the yields of the D0 and D̄0 signals. Experimentally,
we count the sum of D0 and D̄0 yields. We assume charge invariance
in the production process through strong interaction, thus the cross
section for D0 mesons only is the average cross section for D0 and D̄0

mesons.

• |y| ≤ 1 is the range of rapidity considered.

• L is the integrated luminosity of the data sample.

• εtrig is the trigger efficiency.
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• εrec is the global efficiency of the reconstruction of our candidates. This
parameter accounts for the geometrical and kinematical acceptances as
well as the detector reconstruction efficiency of the signal.

• Br(D0 → Kπ) is the decay branching ratio of the channel studied.

We refer to the decay products, K and π, as the D0 “daughters”.

3.4.1 Measurement strategy

The D0 → Kπ channel represents one of the simplest topology that we
can study at CDF II to detect this charmed neutral meson: D0 → Kπ has a
relatively high branching ratio (about 3.9 %) and it is fully detected by the
tracking system (the daughters are two charged particles). We are then able
to identify this heavy meson concealed by a background of light particles
(mainly pions and kaons) several orders of magnitude larger.

To unfold the D0 signal from the background we apply the following
procedure for each event:

• apply quality requirements on the tracks, in terms of hits produced
inside the tracking system (see Sec. 6.1) to reduce the contamination
of fake reconstructions;

• combine together all the possible couples of the selected tracks with
opposite charges;

• require geometrical conditions between the two considered tracks to
reduce the combinations coming from unrelated tracks;

• fit the tracks’ helices looking for an intersection point. If the fit returns
a possible common origin for them, a D0 candidate is defined;

• select only candidates with a decay vertex displaced from the primary
vertex of interaction (to reduce the combinatorial background) and in
the rapidity region of interest.
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We then evaluate the candidate’s invariant mass and study its distribution
for all the candidates found in the sample; we search a signal at the expected
D0 mass (about 1.864 GeV/c2). More details of the measurement strategy
will be described in Sec. 6.1.

3.4.2 D0 → Kπ topology

The D0 lifetime is τ ∼ 410 · 10−15 s, that correspond to a decay length of
cτ ∼ 123 µm. Thus, the D0 travels a path, away from the primary vertex of
the pp̄ collision that originates it, that is measured thanks to the resolution
of the silicon tracker SVX II (see Section 2.2.3.2).

Figure 3.1: Scheme of the topology of the D0 decay in the transverse plane
for the K−π+ channel .

Fig. 3.1 shows the topology of the D0 → K−π+ decay. The figure also
shows some of the fundamental quantities used in this analysis:

• ~xpri, the primary vertex, is the point where the pp̄ collision takes place.
It is the D0 origin vertex.

• ~pT , the transverse momentum, is the projection of the momentum vec-
tor to the transverse plane (we refer to its magnitude as pT ).
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• ~xsec, the secondary vertex, is the D0 decay vertex.

• Lxy, the transverse decay length, is the signed distance between the
primary and the secondary vertices projected to the transverse plane.
It is defined as follows:

Lxy =
(~xsec − ~xpri) · ~pT

pT
(3.2)

where ~pT = (px; py; 0)

• d0, the impact parameter, is the signed distance between the origin
vertex and the helix of a daughter at their closest approach. It is
defined as stated in Eq. 2.8.

• ∆z0, the longitudinal distance, is the difference in the z coordinate of
the two daughters at their closest approach to the beam, (not shown
in figure, see Sec. 2.2.3.5).

• ∆ϕ0, the transverse opening angle, is the difference of the ϕ0 angle of
the two daughters at their closest approach to the beam, (not shown
in figure, see Sec. 2.2.3.5).
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Beam position reconstruction

4.1 Importance of beam reconstruction

The beam position reconstruction is mandatory in order to extract the
D0 signal from the combinatorial background; for this task, the main step
consists in performing a selection able to distinguish between prompt and
secondary particles. Thanks to the spatial resolution of the CDF II tracking
system (see Sec. 2.2.3.5), we can identify the particles produced in the D0

decay from the prompt mesons produced in the event by looking at their
impact parameter. The impact parameter is closely related to the beam
position. In fact, the impact parameter of a track, d0, is the distance in the
transverse plane between the track and the primary vertex; it is defined as
stated in Eq. 2.8 .

The pp̄ interaction happens on the beam trajectory, so we can identify the
coordinates of the primary vertex of interaction (xc, yc, zc) with the beam
position at the zc coordinate of the vertex. We exploit this assumption to
evaluate the beam position. Once the beam position is found, the d0 value
for each track comes straight from the definition 2.8. It is then clear that
the definition of the beam position affects the reconstruction of d0, becoming
crucial for our analysis.

For the high energy runs (
√
s = 1.96 TeV), the beam position is recon-

structed by the CDF offline software; however, this information is missing
for the low energy runs (

√
s = 900 GeV).

56
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In what follows, we describe the procedure we applied to obtain the para-
meterization of the beam for the runs used in this analysis; we tested our
procedure against some high energy runs to be sure that our result is com-
patible with the official one.

4.2 Reconstruction procedure

The transverse profile of the luminous region inside CDF can be described
by two Gaussian functions in x and y. The mean of these Gaussians defines
the beam position. Their width is approximately σT ≈ 28 µm. Unfortunately,
the beam is not centered with respect to the detector nor parallel to the
detector z-axis. The dependence of the x and y position of the beam on z

can be described, at a first order of approximation, by a linear function:

x =
dx

dz
· z + x0 y =

dy

dz
· z + y0, (4.1)

where x0 and y0 are the position of the beam at z = 0 (“offset”) in the
transverse plane, while dx

dz
and dy

dz
are the slopes of the beam in the 0xz and

0yz planes, respectively.
Generally, run by run the orbits of protons and antiprotons beams vary a
little; we have then to fit the beam position independently for each run.

As can be found in [26], two different algorithms can be used to obtain
the beam position.
The first algorithm is based on the 3D reconstruction of the primary vertices1.
The beam line will be described by the straight line that best fits their
positions. The reconstruction of the beam position in the high energy runs
is obtained using this algorithm.
The second algorithm is instead based directly on tracks2. If the beam was
in its nominal position (x0 = 0, y0 = 0, dx

dz
= 0, dy

dz
= 0), the distribution of the

tracks’ impact parameter would be (to a first order approximation) a gaussian
centered in d0 = 0 and flat in ϕ0, because the production of the tracks within
the collision is invariant for rotation on the z-axis. The beam offset and slope

1We further refer to this algorithm as the vertices algorithm
2We further refer to this algorithm as the d0 − ϕ0 algorithm.
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Figure 4.1: Scheme of the correlation between the impact parameter and the
angle ϕ0 of a track.

affect the raw d0 versus ϕ0 distribution and a correlation between the two
variables arises. This correlation comes from a rototranslation of the beam
with respect to the “ideal” spatial reference system described before.

As can be seen in Fig. 4.1, the impact parameter d0 of a track coming
from a primary vertex at (xc, yc) can be parameterized to the first order using
the track parameterization of CDF [27]:

d0(xc, yc, ϕ0) = −xc sinϕ0 + yc cosϕ0. (4.2)

Introducing the z position and exploiting the equations 4.1, we write the
impact parameter as a function of the 4 parameters that describe the beam
line:

d0(z, ϕ0) = −x0 sinϕ0 + y0 cosϕ0 − z ·
dx

dz
sinϕ0 + z · dy

dz
cosϕ0. (4.3)
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To obtain x0, y0, dxdz ,
dy
dz
, we have to do what follows:

• sample the z coordinate into several ranges;

• for each range:

– select only tracks that satisfy minimal quality requests:

∗ SVX II small angle stereo hits ≥ 1;

∗ SVX II stereo hits ≥ 2;

∗ SVX II axial hits ≥ 3;

∗ COT stereo hits ≥ 25;

∗ COT axial hits ≥ 25;

∗ pT ≥ 0.9 GeV/c;

∗ |η| ≤ 1.2.

– plot the d0-ϕ0 distribution for the selected tracks;

– fit the distribution using the parameterization on Eq. 4.4

d0(x, y, ϕ0) = −x sinϕ0 + y cosϕ0, (4.4)

• plot the x and y obtained through the fits as a function of z (the center
of each range is used);

• fit both x and y distributions with a line (see Eq. 4.3).

4.3 High Energy test

We tested our procedure on four (arbitrarily chosen) high energy runs (see
Tab. 4.1), comparing our result with the official beam line measurement.

We decided to divide the z-range into 12 equal sub-ranges, 8 cm long
from -48 to 48 cm. For each sub-range, all the tracks with the corresponding
z0 that pass the quality requirements are used in the d0-ϕ0 plots. Fig. 4.2
shows an example of d0-ϕ0 distributions in six ranges within 0 < z ≤ 48 cm.

Some of the plots in Fig. 4.2 show blank areas, e.g. in Fig. 4.2 (f), a
large blank strip is visible between 100◦ < ϕ0 < 130◦. This blanks are due
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: d0 versus ϕ0 in 6 z sub-ranges, run 289274.
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RunNumber Maximum Luminosity Integrated Luminosity MB Events
289274 249.036 ×1030 cm−2 s−1 6,191.039 nb−1 860,362
289331 308.152 ×1030 cm−2 s−1 6,874.450 nb−1 1,024,869
289384 178.287 ×1030 cm−2 s−1 3,758.349 nb−1 499,942
289461 295.268 ×1030 cm−2 s−1 6,655.777 nb−1 980,190

Table 4.1: Maximum, integrated luminosity and number of events triggered
for the four high energy runs used in the test.

to blind spots in the detector tracking.

For each scatter plot, the projection of each ϕ0 bin on the d0-axis is de-
scribed, to a first order approximation, by a gaussian function. For each
scatter plot, we fill a corresponding “profile” plot with the mean value of d0

in each ϕ0 bin, assigning the gaussian width as the associated uncertainty.
We fit these new plots instead of fitting the scatter plots. Fig. 4.3 shows
the application of this method on the scatter plot (b) of Fig. 4.2. The fit of
the profile plot is performed using Eq. 4.4; x and y are the free parameters
that give the beam position in the transverse plane at the center of the cor-
responding z sub-range.

The parameters x and y of each sub-range are then plotted versus z and
the beam profile in 0xz and 0yz planes is found. Fig. 4.4 shows the beam
position in the 0xz and 0yz planes for the four considered runs; the black
continuous lines represent the results of our fits; the black dashed lines show
the systematic uncertainty due to the beam transverse width. The red lines
represent the beam positions reconstructed by the official algorithm.

For each run, our result is compatible with the official one: the offset is
within 8 microns (well below the minimal transverse width of the beam ≈ 28

µm ) and the slope is in perfect agreement.
The procedure is therefore proved to be reliable and has been adopted in this
analysis for the low energy scans.
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Figure 4.3: Comparison between the d0 versus ϕ0 scatter plot and the d0

versus ϕ0 profile in 8 < z ≤ 16 cm region, run 289274.
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(a) Run 289274 beam position in 0xz plane.
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(b) Run 289274 beam position in 0yz plane.
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(c) Run 289331 beam position in 0xz plane.
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(d) Run 289331 beam position in 0yz plane.

Figure 4.4: Beam position in 0xz and 0yz planes and comparison with the
official reconstruction for the four runs under exam. The black continuous
lines represent the results of our fits; the black dashed lines show the system-
atic uncertainty due to the beam width. The red lines represent the beam
position reconstructed by the official algorithm.
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(e) Run 289384 beam position in 0xz plane.
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(f) Run 289384 beam position in 0yz plane.
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(g) Run 289461 beam position in 0xz plane.
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(h) Run 289461 beam position in 0yz plane.

Figure 4.4: Beam position in 0xz and 0yz planes and comparison with the
official reconstruction for the four runs under exam. The black continuous
lines represent the results of our fits; the black dashed lines show the system-
atic uncertainty due to the beam width. The red lines represent the beam
position reconstructed by the official algorithm.
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4.4 Low energy beams

The list of the eleven low energy runs used in this analysis is shown in
Tab. 4.2.

For the reconstruction of the beam position, we apply the procedure de-
scribed in the previous paragraphs to each low energy run. Fig. 4.5 shows
a typical scatter plot and a typical profile plot for the 8 < z ≤ 16 cm range
of a low energy run. Fig. 4.6 shows the beam position reconstruction in the
0xz and 0yz planes for the eleven low energy runs. The black continuous
lines represent the results of our fits; the black dashed lines show the system-
atic uncertainty due to the beam width. For each low energy run, Tab. 4.3
summarizes the beam position measured using our custom procedure.

RunNumber Maximum Luminosity Integrated Luminosity MB Events
311662 0.848 ×1030 cm−2 s−1 4.439 nb−1 2,254,669
311664 0.610 ×1030 cm−2 s−1 0.603 nb−1 386,554
311713 0.496 ×1030 cm−2 s−1 1.590 nb−1 1,548,586
311714 0.284 ×1030 cm−2 s−1 0.585 nbs−1 874,005
311730 1.338 ×1030 cm−2 s−1 5.206 nb−1 2,959,258
311825 0.717 ×1030 cm−2 s−1 1.177 nb−1 2,429,437
311835 0.837 ×1030 cm−2 s−1 8.937 nb−1 5,212,267
311910 1.132 ×1030 cm−2 s−1 15.192 nb−1 11,261,445
311956 0.866 ×1030 cm−2 s−1 14.112 nb−1 9,205,682
311976 0.891 ×1030 cm−2 s−1 12.124 nb−1 7,572,947

Table 4.2: Low energy runs list. The ratios of the integrated luminosity and
the number of Minimum Bias events in this Table seems to be inconsistent
with the ones in Tab. 4.1. This is due to the different prescales (i.e output
rate) used in the two configurations.
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Figure 4.5: Comparison between the d0 versus ϕ0 scatter plot and the d0

versus ϕ0 profile in 8 < z ≤ 16 cm region, run 311714.

z [cm]
-50 0 50

x 
[c

m
]

-0.06

-0.04

-0.02

Beam Position in 0xz Plane RunNum 311662

 0.0006±p0 = -0.0426 

 0.00002±p1 = 0.00052 

Beam Position in 0xz Plane RunNum 311662

(a) Run 311662 beam position in 0xz plane.
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(b) Run 311662 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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(c) Run 311664 beam position in 0xz plane.
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(d) Run 311664 beam position in 0yz plane.
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(e) Run 311699 beam position in 0xz plane.
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(f) Run 311699 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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(g) Run 311713 beam position in 0xz plane.
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(h) Run 311713 beam position in 0yz plane.
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(i) Run 311714 beam position in 0xz plane.
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(j) Run 311714 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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(k) Run 311730 beam position in 0xz plane.
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(l) Run 311730 beam position in 0yz plane.
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(m) Run 311825 beam position in 0xz plane.
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(n) Run 311825 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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(o) Run 311835 beam position in 0xz plane.
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(p) Run 311835 beam position in 0yz plane.
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(q) Run 311910 beam position in 0xz plane.
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(r) Run 311910 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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(s) Run 311956 beam position in 0xz plane.
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(t) Run 311956 beam position in 0yz plane.
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(u) Run 311976 beam position in 0xz plane.
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(v) Run 311976 beam position in 0yz plane.

Figure 4.6: Beam position in 0xz and 0yz planes for low energy runs. The
black continuous lines represent the results of our fits; the black dashed lines
show the systematic uncertainty due to the beam width.
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Chapter 5

Monte Carlo samples

5.1 Monte Carlo simulation

In complex experiments like CDF II, the detector acceptance and the
detector expected response to the passage of a particle are often simulated via
Monte Carlo (MC) techniques. It is impossible, in fact, to analytically predict
the detector behavior because of the complexity of its geometry and because
of the huge number of variables to consider. MC simulation techniques are
useful numerical methods that allow, e.g., to estimate the fraction of events
escaping from the detector acceptance or to predict the functional form of a
particular signal.

In HEP experiments, MC techniques can be generally divided into three
kinds: generation simulation, detector simulation and trigger simulation. In
this analysis we do not need the trigger simulation.
The generation simulation incorporates, for this analysis, all the physical
processes involved in the pp̄ collision. The collision is simulated from the
initial interaction up to the final formation of the hadronic state.
The detector simulation is the simulation of the passage of the MC produced
particles inside the detector geometry. The detector simulation also provides
the generation of the signals collected by the subdetectors, their read out,
etc..
The final result of a complete MC simulation is a sample of simulated data
that has the same format as data, allowing their analysis with the same anal-

73
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ysis frameworks.

Different types of generators are used in CDF Monte Carlo samples; in
this analysis we used BGenerator [22].

BGenerator is used in the CDF B Monte Carlo (BMC). BMC generates
samples of hadrons containing a quark b or a quark c (e.g. D mesons). After
generating the hadrons, BGenerator forces them to decay into a particular
final state. At the end, the decay products are propagated within the CDF
II detector simulation. The joint distribution of transverse momentum and
pseudo-rapidity for the different hadrons are the input information of the
BGenerator.
The interactions between the particles and the different materials of the
detector are also reproduced. The different signals that the particles produce
in all the subdetectors are then simulated. The version 3 of the GEANT
package [23] models the detector geometry and material for the standard
CDF II simulation.

Some sub-detectors are simulated by specific packages rather than by
GEANT. For the silicon detectors, a parametric model, tuned on data, sim-
ulates the charge deposition: it accounts for the Landau distribution, pro-
duction of δ rays, capacitive charge sharing between neighboring strips and
noise, etc.

The off-line database is used to tune the simulation. The configuration is
changed on a run by run basis (position and slope of the beam line, relative
mis-alignments between subdetectors, trigger table used, etc.) and local or
temporary inefficiencies of the silicon tracker (active coverage, noisy channels,
etc.) are taken into account. In this way, a detailed simulation of the real
runs is available and it is possible to match the distribution of data and MC
in any given sample.
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5.2 Generation technique

We exploit MC techniques to simulate the shapes of the signals.
We simulate the D0 → Kπ decay channel for the signal and all the other D0

decay channels for the physical background. Through this simulation, we are
able to interpret the invariant K−π+ mass distribution obtained from data.

As input for the BMC, we used the rapidity distribution versus the trans-
verse momentum (y–pT ) for the mesons to be generated in the ranges [-1.3;
1.3]×[0; 15] GeV/c. A shape that describes the phenomenological distribu-
tion in the y–pT range is used.

In order to reproduce the same characteristics of our data sample, we
do not perform any trigger simulations. The MC events follow the same
reconstruction chain as data: we also perform the same candidate selection
used for the data (see Sec. 6.1).

5.3 Samples

For our purpose, we simulate two different MC sample, the D0 → Kπ

sample and the D0 → X sample.

5.3.1 D0 → Kπ

For this sample, we generate D0 and D̄0 and force them to decay into Kπ
only (D0 → K−π+ and D̄0 → K+π−).

Fig. 5.1 shows the resulting invariant K−π+ mass plot. For each candi-
date D0, we assume that the negative track is a kaon and the positive track
is a pion and we sum their four-momenta to evaluate the invariant mass.
The plot is composed by the sum of two structures, both centered at the
expected D0 mass (mD0 ' 1.864 GeV/c2): a narrow peak with a width of
about 8 MeV/c2 and a wider one with a width of about 80 MeV/c2. In the
D0 candidate reconstruction, we always assign the mass of the kaon to the
negative track. Thus, when a D̄0 is produced, we fail the mass assignment of
the tracks. The narrow peak in Fig. 5.1 represents the D0 → K−π+ signal
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Figure 5.1: Invariant K−π+ mass of candidates reconstructed in the D0 →
Kπ MC sample, linear scale (Top). Invariant K−π+ mass of candidates
reconstructed in the D0 → Kπ MC sample, logarithmic scale (Bottom).
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that we obtain when we have the Right Sign (RS) assignment of the masses:
the kaon mass (mK− ' 494 MeV/c2) is assigned to the negative track and
the pion mass (mπ+ ' 139 MeV/c2) to the positive track. The wide peak
represents the D̄0 → K+π− signal that we obtain every time we have the
Wrong Sign (WS) assignment of the masses.

D̄0 → K+π−

D
0
→
K
−
π

+

Figure 5.2: D0 → Kπ MC sample: 2D invariant mass plot of candidates
with K+π− assignment in the y axis versus K−π+ assignment in the x axis.

We plot the two possible Kπ invariant mass assignments in a 2D scatter
plot: K+π− versus K−π+. As one can see in Fig. 5.2, the two signals are
distinctly separate: the generated D̄0 are represented by the horizontal bulk
of candidates, while the generated D0 are represented by the vertical one.
Fig. 5.1 is in fact the projection of the 2D plot of Fig. 5.2 on the horizontal
axis.

We use this MC sample not only to understand how the signals (D0 and
D̄0) appear in the invariant K−π+ mass plots, but also to study the signals
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shapes as a function of pT (see Sec. 5.4) and to perform the fit of the yield
described in Chapt. 6.

5.3.2 D0 → X

For this sample, we simulate the main D0 decay channels that could affect
the invariant K−π+ mass distribution.

Fig. 5.3 shows the resulting invariant K−π+ mass plot. The plot still
shows the RS and the WS peaks, but several other structures are visible at
different invariant mass ranges.

Plotting again the two mass assignments on a 2D scatter plot (Fig. 5.4),
these structures are well visible and their origin is cleared; each structure
corresponds to a different decay channel, described in what follows:

• D0 → KK decays: in the mass assignment, we assume that the positive
track is due to a pion. In this case we underestimate the candidate’s
mass (left-bottom region of the plot);

• D0 → ππ decays: in the mass assignment, we assume that the negative
tracks is due to a kaon. In this case we overestimate the candidate’s
mass (right-top region of the plot);

• multibody D0 decays: we underestimate the candidate mass (left-
bottom region of the plot), because we evaluate it using only two tracks
(e.g. we miss additional particles, daughters of the D0);

• combinatorial: the random combination of tracks that accidentally sat-
isfy our selection and form a fake candidate are visible as a large diag-
onal band in the plot.

We use this MC sample not only to understand how the different D0

decay channels appear in the invariant K−π+ mass plots; in fact, this MC
also shows that from mK−π+ ≥ 1.8 GeV/c2 the only components that enter
the plot are RS, WR and combinatorial background. The tails from other
decay channels in this range are negligible with respect to the uncertainties
expected from the fit.
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Figure 5.3: Top: Invariant K−π+ mass of candidates reconstructed in the
D0 → X MC sample, linear scale. Bottom: Invariant K−π+ mass of candi-
dates reconstructed in the D0 → X MC sample, logarithmic scale.
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Figure 5.4: 2D invariant mass plot of candidates with K+π− assignment in
the y axis vsK−π+ assignment in the x axis. The plot shows data collected by
high-pT triggers; we are showing these data instead of our MC sample because
they give a better view of the distribution thanks to the huge statistics and
the presence of the combinatorial component (the BMC simulates exclusively
the D0 decays and not the whole event).

5.4 Signal shapes

The statistics in our data allow us to measure the D0 yields as a function
of pT (D0). We divide the pT range from 0.5 to 6.5 GeV/c in bins of 1 GeV/c.
We then analyze the shapes of the RS and WS separately for each bin. The
shapes obtained from the MC sample are then fixed and used to fit the data.
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5.4.1 Right Sign (RS)

We parameterize the mass line shape of the RS candidates with a sum of
two Gaussians. The probability density function is then defined as follows:

℘RS(m; ~θRS) = g ·G(m;m1, σ1) + (1− g) ·G(m;m2, σ2) (5.1)

where:

• ~θRS is the vector of parameters. It is defined as ~θRS = {g,m1,m2, σ1, σ2}
and it is extracted by fitting the simulated invariant K−π+ mass dis-
tribution when a D0 is generated;

• g is the relative fraction of the Gaussian labeled with the index 1 with
respect to the sum of the two Gaussians;

• G represents the parameterization of the gaussian functions. It is de-
fined as follows:

G(m;µ, σ) =
1

σ
√

2π
e−

(m−µ)2

2σ2 ; (5.2)

• m1(2) and σ1(2) are, respectively, the mean and the width of the Gaus-
sian 1 (2 );

The results of the parameterization for each bin of pT (D0) between 0.5 GeV/c
and 6.5 GeV/c are shown in Fig. 5.5. D0 candidates from the D0 → Kπ MC
sample are used for this fits.

From these simulations, we infer that the RS signal width is almost
costant throughout the all pT (D0) range under exam.

5.4.2 Wrong Sign (WS)

We parameterize the mass line shape of the WS candidates with the same
pdf used for the RS:

℘WS(m; ~θWS) = g ·G(m;m1, σ1) + (1− g) ·G(m;m2, σ2) (5.3)
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(a) 0.5 ≤ pT (D0) < 1.5 GeV/c (b) 1.5 ≤ pT (D0) < 2.5 GeV/c

(c) 2.5 ≤ pT (D0) < 3.5 GeV/c (d) 3.5 ≤ pT (D0) < 4.5 GeV/c

Figure 5.5: D̄0 → Kπ MC sample: invariant K−π+ mass distribution for the
RS candidates in 1 GeV/c intervals of pT (D0).
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(e) 4.5 ≤ pT (D0) < 5.5 GeV/c (f) 5.5 ≤ pT (D0) < 6.5 GeV/c

Figure 5.5: D̄0 → Kπ MC sample: invariant K−π+ mass distribution for the
RS candidates in 1 GeV/c intervals of pT (D0).

The results of the parameterization for each bin of pT (D0) for the WR
are shown in Fig. 5.6. D̄0 candidates from the D0 → Kπ MC sample are
used for this fits.

At lower masses, a long tail due to a soft photon emission is present. For
the fit shapes, we do not take into account the radiative tail because this
correction is minimal with respect to the measurement uncertainties.

We notice that the WS signal width has a clear dependence on the pT (D0),
unlike the RS shapes. The width of the distribution increases with the mo-
mentum.
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(a) 0.5 ≤ pT (D0) < 1.5 GeV/c (b) 1.5 ≤ pT (D0) < 2.5 GeV/c

(c) 2.5 ≤ pT (D0) < 3.5 GeV/c (d) 3.5 ≤ pT (D0) < 4.5 GeV/c

Figure 5.6: Invariant K−π+ mass distribution for the WS candidates in 1
GeV/c intervals of pT (D0).
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(e) 4.5 ≤ pT (D0) < 5.5 GeV/c (f) 5.5 ≤ pT (D0) < 6.5 GeV/c

Figure 5.6: Invariant K−π+ mass distribution for the WS candidates in 1
GeV/c intervals of pT (D0).
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5.4.3 Background

Unrelated couples of tracks can accidentally satisfy our selection require-
ments on candidates, generating a combinatorial background.

From the MC simulation, we observe that the the signal is spread on a
large invariant mass range around the expected D0 mass value because of the
WS candidates. Thus, we can’t rely on the sidebands of the data invariant
mass plot to parametrize it. In addition to that the MC does not simulate
the whole event, but only the signal.

We extract the combinatorial background trend directly from data by
forcing the reconstruction of fake candidates. We repeat exactly our selec-
tion but using couples of tracks of the same sign (SS). We find that a de-
creasing exponential shape is a good parameterization for the combinatorics
trend. Fig. 5.7 shows the invariant K±π± mass plot for the SS candidates,
integrated over all the pT range.

Figure 5.7: Invariant K±π± mass distribution for Same Sign candidates of
the data sample. The distribution is integrated over the whole pT (D0) range.



Chapter 6

Signal evidence

6.1 Base selection

We discuss here the data selection which leads to the measurement of D0

candidates in the sample. The two fundamental parameters of the selection
are the daughters’ impact parameter, d0, and the D0 transverse decay length,
Lxy; these parameters both depend on the beam position. In the following,
we use the d0 and Lxy referred to the beam measurement performed in Chap.
4.

The method to reconstruct the D0 candidates consists in evaluating the in-
variant mass of any possible combination of two tracks (with opposite charge)
reconstructed in each event, assuming that they are a K and a π.

To suppress fake tracks, we apply some selection criteria, specifically stud-
ied for this task. We select tracks only in the η and pT ranges where the re-
construction efficiency of the tracking system is maximum. We also require
a minimum impact parameter of the tracks in order to reduce the number of
the tracks coming from the primary vertex of interaction and maximize the
number of tracks coming from a secondary vertex.

The requests for the single track are the following:

• SVX II small angle stereo hits ≥ 1;

• SVX II stereo hits ≥ 2;

• SVX II axial hits ≥ 3;
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• COT stereo hits ≥ 25;

• COT axial hits ≥ 25;

• |η| ≤ 1.2;

• pT ≥ 0.7 GeV/c;

• 60 µm ≤ |d0| ≤ 1.0 mm;

The first six requests represent a base "quality" selection of the tracks
used in what follows. To fix the values of these parameters, we take into ac-
count the tracking system specification: in fact, these values assure the lowest
contamination of fake reconstructed tracks. The requirements on transverse
momentum and on impact parameter are preliminarly set after the study of
their distributions in MC events. Each possible pair of tracks that passed
the above selection is then required to meet the following additional criteria:

• q1 · q2 < 0;

• d0,1 · d0,2 < 0;

• 2◦ ≤ ∆ϕ0 = |ϕ0,1 − ϕ0,2| ≤ 90◦;

• ∆z0 = |z0,1 − z0,2| ≤ 6 mm;

where we label the parameters relative to the negative track with (1) and
the ones relative to the positive track with (2); q1 and q2 are the daughters’
charges. The first two requirements are two constraints set by the decay
geometry and kinematics. We make requests on ∆ϕ0 studying its distribution
in MC events in order to take into account tracking resolution (∆ϕ0 ≥ 2◦)
and kinematics of the decay channel (∆ϕ0 ≤ 90◦).

For each couple, we assign the masses to the tracks in the hypothesis that
the negative track represents the kaon and the positive track represents the
pion. We set the z coordinate of the primary vertex to be the average of the
tracks z0; the x and y coordinates are then obtained from those of the beam
after evaluating the beam position in the transverse plane at that z.
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Then, we fit each pair of tracks, looking for a possible common origin
point displaced by the primary vertex.

The fitter looks for a possible intersection point between the two tracks
in the transverse plane. The fit converges only if the longitudinal distance
between the two helices is within a certain threshold. The fitter returns
the candidate’s decay vertex position and the resulting χ2/ndf of the fit,
referred to as χ2 in what follows. We then apply the following selection on
the reconstructed candidates:

• Lxy ≥ 300 µm;

• |y(D0)| ≤ 1;

• χ2 ≤ 9;

where y(D0) is the candidate’s rapidity; its value represents the rapidity
range we are interested in. The values of the decay length and χ2 are fixed
at first studying their distributions in MC events.

6.2 Evidence of the D0 signal

We plot the invariant K−π+ mass distribution for the candidates selected
as described above, looking for a structure in the D0 mass region: Fig. 6.1
shows the resulting distribution.
This plot represents the first evidence of the D0 signal and, in general, of the
charm production in a pp̄ collider experiment at

√
s = 900 GeV.

The distribution shows a peak at the expectedD0 mass,mD0 ' 1.864 GeV/c2.
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Figure 6.1: InvariantK−π+ mass distribution of ZB plus MB events obtained
with the discussed selection.
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6.3 Fitting procedure

In order to find the D0 yield, we need to perform a fit of the invariant
K−π+ mass distribution of the selected candidates.

The bins of the invariant K−π+ mass plots have a constant width of 8
MeV/c2; the fit range is [m0;mmax] = [1.8 ; 2.4] GeV/c2, as described in Sec.
5.3.2.

We assume a Poisson distribution for the number of events in each bin,
nb, because the bin contents represent counts. We define f(m,p) to be the
probability density function used to perform the fit and p to be the vector of
the fit parameters. The fitted bin content is fb(p); in the equations we refer
to fb(p) as fb for sake of simplicity. Thus, the histogram likelihood results
to be the following:

Lb(p) =
M∏
b=1

(fb)
nbe−fb

nb!
, (6.1)

giving

Fb(p) = −2 lnLb(p) = −2
M∑
b=1

(nb ln fb − fb − lnnb!). (6.2)

∑M
b=1 fb is the fitted contents of all bins.

∑M
b=1 lnnb! is independent of p and

does not alter the fit result. Ignoring this term, we perform the fit minimizing
the following function:

Fb(p) = −2 lnLb(p) = −2
M∑
b=1

nb ln fb + 2
M∑
b=1

fb. (6.3)

With respect to a χ2 fit, the likelihood method has the advantage of
treating correctly the empty bins and use them in the fitting procedure.

In our case, the parameter vector is p = (nS, nB, q), where nS and nB
are respectively the signal and background yields, while q is the slope of the
exponential used for the combinatorics.
The fit function is defined as follows:

f(m; p) = nS · ℘sig(m) + nB · ℘bkg(m; q). (6.4)
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℘sig(m) is the Probability Density Function (pdf ) of the signals; it is defined
as follows:

℘sig(m) = fRS · ℘RS(m) + (1− fRS) · ℘WR(m); (6.5)

where fRS is the fraction of RS candidates with respect to the number of D0

and D̄0 candidates. We set its value to 0.5 assuming the C-invariance of the
strong interaction production. ℘RS(m) and ℘WR(m) are fixed in shape and
central value by the fit of the corresponding MC (see Sec. 5.4).
℘bkg(m) is the pdf of the background. It is defined as follows:

℘bkg(m; q) =
e−q·m∫ mmax

m0
e−q·mdm

. (6.6)

The yield is defined as the integral of the RS plus the WS fit functions;
in this manner, the yield represents the number of D0 and D̄0 found.

6.4 D0 yield

We now fit theK−π+ mass distribution for all the candidates with pT (D0)

greater than 1.5 GeV/c and calculate the yield relative to the base selection
described in Sec. 6.1. Fig. 6.2 shows the results of the fit.

We compare the D0 yield in the 900 GeV sample with the one in the
1.96 TeV. This comparison is possible because the data were collected by the
same detector and the same selection configuration is applied. We neglect
here minor differences in the reconstruction efficiencies that may arise due to
the different center of mass energies and that will need more detailed studies.
We choose the selection described in Sec. 6.1. For each sample, we normalize
the invariant K−π+ mass plot to the number of events in the sample. The
resulting plots are shown in Fig. 6.3

In the low energy sample we obtain one third of candidates per million
of events with respect to the high energy one. This reduction is due to the
difference of the D0 cross sections at the different energies: the ratio between
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Figure 6.2: InvariantK−π+ mass distribution of ZB plus MB events obtained
with the discussed selection. The blue line represents the result of the fit; the
combinatorial background (red) and the WS (green) contributions are also
shown.

the high and the low energy distributions is consistent with what is expected
from a rough extrapolation of the total cc̄ cross section (see Fig.1.3).
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(a) Normalized yield at
√
s = 1.97 TeV. (b) Normalized yield at

√
s = 900 GeV.

Figure 6.3: Comparison between the invariant K−π+ mass plots, normalized
to the number of events in the sample, obtained in the high energy sample
(left) and in the low energy sample (right).



Chapter 7

Differential yields

7.1 Selection optimization

The requirements described in the previous chapter were set in order to
unfold the D0 signal from the background, considering all the candidates
with pT ≥ 1.5 GeV/c. If the D0 production is studied as a function of the
D0 transverse momentum, this selection is not guaranteed to be the best one
as a function of pT (D0).

Thus, instead of considering all the candidates with pT ≥ 1.5 GeV/c, we
divide the pT (D0) range in bins of 1 GeV/c and we perform an optimization
procedure of the selection independently in each pT (D0) bin.
Since the MC simulation does not correctly reproduce the background, we
decided to use a pure data-driven optimization.

The aim of the optimization procedure is to reduce the statistical un-
certainty associated with the signal for each pT (D0) bin. In order to do so,
we define a figure of merit that accounts for the signal combined with the
background and we find the selection that maximizes it, independently for
each bin.

We define the signal S as the integral of the RS and WS fit functions
in the mass range mD0± 16 MeV/c2, i.e. mD0 ± 2σmD0

; we define the back-
ground B as the integral of the background fit function in the same range.
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In order to avoid eventual statistical biases in the selection, we proceed
as follows:

• the sample is split into two mutually exclusive subsamples, A and B,
using a random criterion. We choose to fill the subsample A with the
events with even event number and B with the ones with odd event
number, obtaining independent subsamples of approximately the same
size.

• We independently apply the same optimization steps on both the sub-
samples:

1. we measure the signal events SAi and the background events BAi
which satisfy the i-th selection configuration in subsample A by
performing a fit of the candidates invariant mass distribution;

2. we choose the figure-of-merit

f(SAi ,BAi ) =
SAi√
SAi + BAi

and we maximize it over the space of configurations built by all
combinations of requirements. We chose this figure of merit be-
cause it gives an estimate of how much the signal is unlikely to be
a background fluctuation;

3. the selection configuration corresponding to the maximum of f
defines the set of requirements optimized in sample A;

4. we repeat steps 2-3 in the sample B;

• we obtain the final sample by applying to the subsample B the require-
ments optimized in subsample A and viceversa. Since a background
fluctuation is not likely to happen in the same mass range for indepen-
dent samples, we obtain a sample of candidates that can be considered
statistically unbiased and optimized.
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We use the variables listed in Tab. 7.1 to built a 5D matrix of selection
configuration. To built the matrix, we differentiate the selection on each
single variable for several different values, referred to as “steps”. The number
of steps considered for each variable and its range is listed in the table.

Variable Range Number of steps
pT of the daughters [0.7; 1.0] GeV/c i = 4
d0 of the daughters [0; 160] µm j = 10
∆z0 of the daughters [0.2; 0.7] cm k = 6
χ2 of the candidate [2; 12] l = 10
Lxy of the candidate [0; 340] µm m = 10

Table 7.1: Variables used in the optimization procedure; we report the range
mapped and the number of steps used.

A selection configuration is defined as:

• pT ≥ pT,i ;

• |d0| ≥ |d0,j| ;

• |∆z0| ≤ |∆z0,k|;

• χ2 ≤ χ2
l ;

• Lxy ≥ Lxy,m,

where pT,i, d0,j, ∆z0,k, χ2
l and Lxy,m are the different values corresponding to

the different steps of each single variable selection.
We map the figure of merit over every possible combination of require-

ments on the five variables. Each configuration is coded with a single num-
ber (C) where every digit represents the considered step for each variable:
C = ijklm.

Fig. 7.1 shows a typical plot of the figure of merit versus the configura-
tion number. Several peaks are visible: the highest one represents the best
selection for the considered pT (D0) bin.
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Figure 7.1: Figure of merit versus the configuration number for sample A, in
the range 1.5 ≤ pT ≤ 2.5 GeV/c.

7.2 Optimized selection

We apply the same optimization procedure considering all the candidates
with pT (D0) ≥ 1.5 GeV/c and we obtain the optimized integrated selection;
thus, for each bin of pT , we compare this selection with the one optimized in
the single bin in order to check if the bin by bin optimization is actually the
best way to discriminate the signal. As we expected, Fig. 7.2 shows that the
figure of merit obtained with the bin by bin selection is higher or equal to
the one obtained with the integrated selection for each bin.

For the measurement of the D0 yields as a function of pT , we decided to
consider only the bins with a figure of merit & 3, where the separation of the
signal from the background is larger. Thus, we considered the pT range from
0.5 GeV/c to 6.5 GeV/c.
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Figure 7.2: Comparison of the figures of merit for the selection optimized
on the whole pT spectrum (red) and for the selection optimized bin by bin
(blue).

7.3 Yields as a function of pT (D0)

Fig. 7.3 shows the results of the fits on data in each pT (D0) bin. The blue
line represents the result of the fit; the combinatorial background (red) and
the WS (green) contributions are also shown.

It is important to highlight that we are able to measure the D0 signal in
the 0.5 ≤ pT (D0) ≤ 1.5 GeV/c bin, as shown in Fig. 7.3 (a), only because of
the of MB and ZB bias triggers and because we unfold the signal from the
background via the bin by bin optimization procedure.

Summing the yield for each pT (D0) bin, even if the selections are different
for each pT (D0) bin, we obtain an estimate of the number of D0 and D̄0 in
the studied range 0.5 ≤ pT (D0) ≤ 6.5 GeV/c.
Fig. 7.4 shows the fitted D0 yields as a function of pT and Tab. 7.2 summa-
rizes the fit results.
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(a) 0.5 ≤ pT (D0) < 1.5 GeV/c

(b) 1.5 ≤ pT (D0) < 2.5 GeV/c

Figure 7.3: Invariant K−π+ mass fit of data in 1 GeV/c intervals of pT (D0).
The blue line represents the result of the fit; the combinatorial background
(red) and the WS (green) contributions are also shown.
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(c) 2.5 ≤ pT (D0) < 3.5 GeV/c

(d) 3.5 ≤ pT (D0) < 4.5 GeV/c

Figure 7.3: Invariant K−π+ mass fit of data in 1 GeV/c intervals of pT (D0).
The blue line represents the result of the fit; the combinatorial background
(red) and the WS (green) contributions are also shown.
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(e) 4.5 ≤ pT (D0) < 5.5 GeV/c

(f) 5.5 ≤ pT (D0) < 6.5 GeV/c

Figure 7.3: Invariant K−π+ mass fit of data in 1 GeV/c intervals of pT (D0).
The blue line represents the result of the fit; the combinatorial background
(red) and the WS (green) contributions are also shown.
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Figure 7.4: Yields as a function of pT obtained with the bin by bin optimiza-
tion.

pT [GeV/c] Yield σY ield σY ield/Yield
0.5 – 1.5 24 9 38%
1.5 – 2.5 156 37 24%
2.5 – 3.5 116 36 31%
3.5 – 4.5 53 12 23%
4.5 – 5.5 66 19 29%
5.5 – 6.5 58 13 22%
Total 473 58 12%

Table 7.2: pT (D0) range, correspondent yield and uncertainties.



Conclusions

In this analysis, we presented a study of the D0 meson production at
√
s

= 900 GeV in the Minimum Bias and Zero Bias samples collected by the
CDF experiment at the Tevatron Collider. Our study belongs to a series of
experimental QCD studies in the kinematic conditions where the perturba-
tive QCD does no longer apply and the behavior of the strong interactions
is not well understood.

The D0 yields as a function of pT has been measured. Specifically, we
evaluated the raw yield of the D0 meson in the decay channel D0 → K−π+

(D̄0 → K+π−) as a function of the D0 transverse momentum in the range
0.5 ≤ pT ≤ 6.5 GeV/c.
A preliminary step was also completed. We developed a procedure to recon-
struct the beam and we successfully reconstructed its position for the low
energy runs. The beam position we measured can be further exploited by
other analyses of the collaboration.
We successfully unfolded the D0 signal from the background, thus complet-
ing the main step toward the measurement of the D0 differential production
cross section. This result is of particular importance since such measurement
is likely to remain the only one of its kind for several years.

Our result is consistent with what is expected from a rough extrapolation
of the total cc̄ cross section measurement performed at different energies.

104



Bibliography

[1] P. W. Higgs, Broken Symmetries, Massless Particles And Gauge

F ields, Phys. Lett. 12 (1964) 132.

[2] P. W. Higgs, Broken Symmetries, Massless Particles And Gauge

F ields, Phys. Lett. 13 (1964) 508.

[3] M. R. Pennington, Swimming with quarks, http://arxiv.org/pdf/hep-
ph/0504262

[4] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010).

[5] A.V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys.
Cosmol. 10, 1 (2000).

[6] G. ’t Hooft, Nucl. Phys. B 44, 461 (1972).

[7] B. W. Lee, Phys. Rev. D 5, 823 (1972).

[8] Ikaros I. Y. Bigi, Charm physics - like Botticelli in the Sistine chapel,
hep- ph/0107102 (2001).

[9] G. Isidori et al. [LHCb Collaboration], arXiv:1111.4987v1 [hep-ph],
(2011).

[10] D. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 91, 241804
(2003).

[11] A. Adare et al [PHENIX Collaboration], Phys. Rev. Lett. 97, 252002
(2006).

105



BIBLIOGRAPHY 106

[12] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 94, 062301
(2005).

[13] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 98, 192301
(2007).

[14] R. Bala, for the ALICE Collaboration, arXiv:1201.0729v1 [nucl-ex],
(2012).

[15] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, AIP Conf.
Proc. 792, 867 (2005).

[16] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Phys. Rev.
Lett. 96, 012001 (2006).

[17] Fermilab Beam Division, Run II Handbook and Operations Rookie
Books.

[18] R. Blair et al. [CDF Collaboration], The CDFII Detector : Technical

Design Report, FERMILAB-Pub-96/390-E (1996).

[19] D. Acosta et al., CDF note 6052, 2002.

[20] S. Klimenko, J. Konigsberg and T. Liss, CDF note 6314, 2003.

[21] N. Goldschmidt CDF note 10650, 2011.

[22] K. Anikeev, P. Christoph and P. Murat, Description of Bgenerator II,
CDF note 5092, 1999.

[23] R. Brun et al., GEANT: Simulation Program For Particle Physics Ex-
periments. User Guide and Reference Manual, 1978.

[24] R. Brun et al., ROOT object oriented data analysis framework.,
http://root.cern.ch.

[25] http://pdg.lbl.gov/2011/hadronic-xsections/

[26] H. Stadie et al., CDF note 6327, 2003.

[27] H. Wenzel et al., CDF note 1924, 1993.



Allegato: sommario in lingua
italiana

In questo lavoro di tesi è presentato uno studio della produzione del
mesone D0 nelle collisioni protone-antiprotone. I dati in analisi sono stati
raccolti dall’esperimento CDF II presso il collisionatore di protoni e antipro-
toni Tevatron sito al Fermi National Accelerator Laboratory. Questo lavoro
fa parte di uno specifico sforzo da parte della collaborazione CDF per mis-
urare la sezione d’urto differenziale dei mesoni contenenti quark di tipo charm
nella regione cinematica dei bassi momenti trasversi.

Lo studio della produzione dei mesoni D0 a basso momento transverso a
differenti energie nel centro di massa è un’opportunità per arricchire l’attuale
conoscenza sul comportamento dell’interazione forte nella regione in cui la
produzione del quark c avviene in condizioni non perturbative. L’attuale teo-
ria di cromodinamica quantistica (QCD) infatti non è in grado di descrivere il
comportamento dell’interazione forte nella regione dei bassi quadri-momenti
transferiti (basso Q2), a causa del running della costante di accoppiamento
αS. In queste condizioni cinematiche, αS è dell’ordine dell’unità, quindi le
teorie pertubative non sono applicabili. Studi sperimentali in questa regione
sono fondamentali per superare la limitazione teorica e fornire spunti per
nuovi modelli.

Il mio lavoro di tesi, supportato dal gruppo di ricerca CDF Bologna, è
un’estensione dei precedenti lavori della collaborazione CDF sui mesoni D0

e concerne l’analisi del campione di dati raccolto all’energia di 900 GeV nel

107



BIBLIOGRAPHY 108

centro di massa durante il cosidetto “Low Energy Scan”. Si è per la prima
volta osservata la produzione di D0 a basso momento trasverso a questa
energia. Il campione di eventi analizzato è il più numeroso mai raccolto ad
un collisionatore adronico in queste condizioni sperimentali.

Obiettivo primario dell’analisi è stato la misura del numero diD0 prodotti
in funzione del loro momento trasverso. Si è selezionato il canale di decadi-
mento D0 → K−π+ (D̄0 → K+π−) per la sua semplice topologia, la sua
buona efficienza di ricostruzione (entrambi i prodotti di decadimento sono
carichi e visibili dall’apparato di tracciamento di CDF) e per il Brancing
Ratio relativamente alto (circa 3.9%).

E’ stato necessario effettuare una misura preliminare per poter finalizzare
analisi: poiché per i run a bassa energia la posizione del fascio non era stata
ricostruita, si è dovuto studiare una procedura ad hoc per tale ricostruzione.
La posizione del fascio è stata quindi ricostruira indipendentemente per ogni
run: potranno beneficiare del risultato ottenuto anche altre analisi della col-
laborazione. La necessità di questa misura è data dal fatto che la segnatura
del decadimento dei mesoni D0 è un vertice secondario distante dal vertice
primario di interazione diversi micron. E’ stato quindi possibile estrarre il
segnale di D0 dal fondo costituito da mesoni leggeri e misurarne il numero
in funzione del momento trasverso nell’intervallo fra 0.5 GeV/c e 6.5 GeV/c.
La misura del numero di D0 in tale intervallo di pT è stata possibile gra-
zie all’utilizzo degli eventi raccolti dai trigger di Minimum Bias e di Zero
Bias e grazie anche alla procedura di ottimizzazione della selezione studiata
nell’analisi.

La tesi si articola in sette capitoli. Nel primo viene presentata una breve
introduzione teorica, mentre nel secondo viene descritto l’apparato sperimen-
tale. Il capitolo tre descrive il campione utilizzato e la strategia d’analisi. Il
capitolo quattro è dedicato alla procedura di ricostruzione della posizione
del fascio ed ai suoi risultati per i run considerati. Nel capitolo cinque sono
descritte le tecniche di simulazione Monte Carlo utilizzate per l’analisi pre-
liminare dei dati. Nel capitolo sei viene presentata l’evidenza del segnale di
D0. Nel settimo capitolo è illustrata la misura del numero di D0 prodotti in
funzione del loro momento trasverso.
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